×

Multivariate residues and maximal unitarity. (English) Zbl 1342.81319

Summary: We extend the maximal unitarity method to amplitude contributions whose cuts define multidimensional algebraic varieties. The technique is valid to all orders and is explicitly demonstrated at three loops in gauge theories with any number of fermions and scalars in the adjoint representation. Deca-cuts realized by replacement of real slice integration contours by higher-dimensional tori encircling the global poles are used to factorize the planar triple box onto a product of trees. We apply computational algebraic geometry and multivariate complex analysis to derive unique projectors for all master integral coefficients and obtain compact analytic formulae in terms of tree-level data.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
32A27 Residues for several complex variables
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [INSPIRE]. · Zbl 1207.81088 · doi:10.1016/j.nuclphysb.2005.02.030
[2] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE]. · doi:10.1103/PhysRevLett.94.181602
[3] Z. Bern, J. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[4] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · doi:10.1016/0550-3213(94)00488-Z
[5] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644 · doi:10.1016/0550-3213(94)90179-1
[6] Z. Bern and A. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys.B 467 (1996) 479 [hep-ph/9511336] [INSPIRE]. · doi:10.1016/0550-3213(96)00078-8
[7] Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+e−to four partons, Nucl. Phys.B 513 (1998) 3 [hep-ph/9708239] [INSPIRE]. · doi:10.1016/S0550-3213(97)00703-7
[8] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [INSPIRE]. · Zbl 1178.81202 · doi:10.1016/j.nuclphysb.2005.07.014
[9] R. Britto, F. Cachazo and B. Feng, Computing one-loop amplitudes from the holomorphic anomaly of unitarity cuts, Phys. Rev.D 71 (2005) 025012 [hep-th/0410179] [INSPIRE].
[10] Z. Bern, N. Bjerrum-Bohr, D.C. Dunbar and H. Ita, Recursive calculation of one-loop QCD integral coefficients, JHEP11 (2005) 027 [hep-ph/0507019] [INSPIRE]. · doi:10.1088/1126-6708/2005/11/027
[11] S.J. Bidder, N. Bjerrum-Bohr, D.C. Dunbar and W.B. Perkins, One-loop gluon scattering amplitudes in theories with N ¡ 4 supersymmetries, Phys. Lett.B 612 (2005) 75 [hep-th/0502028] [INSPIRE].
[12] R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev.D 72 (2005) 065012 [hep-ph/0503132] [INSPIRE].
[13] R. Britto, B. Feng and P. Mastrolia, The cut-constructible part of QCD amplitudes, Phys. Rev.D 73 (2006) 105004 [hep-ph/0602178] [INSPIRE].
[14] P. Mastrolia, On triple-cut of scattering amplitudes, Phys. Lett.B 644 (2007) 272 [hep-th/0611091] [INSPIRE]. · Zbl 1248.81135
[15] A. Brandhuber, S. McNamara, B.J. Spence and G. Travaglini, Loop amplitudes in pure Yang-Mills from generalised unitarity, JHEP10 (2005) 011 [hep-th/0506068] [INSPIRE]. · doi:10.1088/1126-6708/2005/10/011
[16] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067 · doi:10.1016/j.nuclphysb.2006.11.012
[17] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and Reduction to master integrals in d dimensions for one-loop amplitudes, JHEP03 (2007) 111 [hep-ph/0612277] [INSPIRE]. · doi:10.1088/1126-6708/2007/03/111
[18] Z. Bern, L.J. Dixon and D.A. Kosower, On-Shell Methods in Perturbative QCD, Annals Phys.322 (2007) 1587 [arXiv:0704.2798] [INSPIRE]. · Zbl 1122.81077 · doi:10.1016/j.aop.2007.04.014
[19] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev.D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].
[20] S. Badger, Direct Extraction Of One Loop Rational Terms, JHEP01 (2009) 049 [arXiv:0806.4600] [INSPIRE]. · Zbl 1243.81219 · doi:10.1088/1126-6708/2009/01/049
[21] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [INSPIRE]. · Zbl 1246.81170 · doi:10.1088/1126-6708/2008/04/049
[22] R. Britto and B. Feng, Unitarity cuts with massive propagators and algebraic expressions for coefficients, Phys. Rev.D 75 (2007) 105006 [hep-ph/0612089] [INSPIRE].
[23] R. Britto and B. Feng, Integral coefficients for one-loop amplitudes, JHEP02 (2008) 095 [arXiv:0711.4284] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/095
[24] Z. Bern, J.J. Carrasco, T. Dennen, Y.-t. Huang and H. Ita, Generalized Unitarity and Six-Dimensional Helicity, Phys. Rev.D 83 (2011) 085022 [arXiv:1010.0494] [INSPIRE].
[25] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett.B 645 (2007) 213 [hep-ph/0609191] [INSPIRE].
[26] R.K. Ellis, W. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [INSPIRE]. · doi:10.1088/1126-6708/2008/03/003
[27] C. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev.D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].
[28] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [INSPIRE]. · doi:10.1088/1126-6708/2008/03/042
[29] P. Mastrolia, G. Ossola, C. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP06 (2008) 030 [arXiv:0803.3964] [INSPIRE]. · doi:10.1088/1126-6708/2008/06/030
[30] W. Giele and G. Zanderighi, On the Numerical Evaluation of One-Loop Amplitudes: The Gluonic Case, JHEP06 (2008) 038 [arXiv:0805.2152] [INSPIRE]. · doi:10.1088/1126-6708/2008/06/038
[31] C. Berger et al., Precise Predictions for W + 3 Jet Production at Hadron Colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [INSPIRE]. · doi:10.1103/PhysRevLett.102.222001
[32] S. Badger, B. Biedermann and P. Uwer, NGluon: A Package to Calculate One-loop Multi-gluon Amplitudes, Comput. Phys. Commun.182 (2011) 1674 [arXiv:1011.2900] [INSPIRE]. · Zbl 1262.81102 · doi:10.1016/j.cpc.2011.04.008
[33] C. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, Phys. Rev. Lett.106 (2011) 092001 [arXiv:1009.2338] [INSPIRE]. · doi:10.1103/PhysRevLett.106.092001
[34] V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP05 (2011) 044 [arXiv:1103.0621] [INSPIRE]. · Zbl 1296.81138 · doi:10.1007/JHEP05(2011)044
[35] Z. Bern, J. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett.B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].
[36] Z. Bern, L.J. Dixon and D. Kosower, A two loop four gluon helicity amplitude in QCD, JHEP01 (2000) 027 [hep-ph/0001001] [INSPIRE]. · doi:10.1088/1126-6708/2000/01/027
[37] E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys.B 605 (2001) 467 [hep-ph/0102201] [INSPIRE]. · doi:10.1016/S0550-3213(01)00210-3
[38] Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP03 (2002) 018 [hep-ph/0201161] [INSPIRE]. · doi:10.1088/1126-6708/2002/03/018
[39] C. Anastasiou, E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys.B 601 (2001) 318 [hep-ph/0010212] [INSPIRE]. · doi:10.1016/S0550-3213(01)00079-7
[40] C. Anastasiou, E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless identical quark scattering, Nucl. Phys.B 601 (2001) 341 [hep-ph/0011094] [INSPIRE]. · doi:10.1016/S0550-3213(01)00080-3
[41] C. Anastasiou, E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless quark gluon scattering, Nucl. Phys.B 605 (2001) 486 [hep-ph/0101304] [INSPIRE]. · doi:10.1016/S0550-3213(01)00195-X
[42] E.I. Buchbinder and F. Cachazo, Two-loop amplitudes of gluons and octa-cuts in N = 4 super Yang-Mills, JHEP11 (2005) 036 [hep-th/0506126] [INSPIRE]. · doi:10.1088/1126-6708/2005/11/036
[43] F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].
[44] J. Gluza, K. Kajda and D.A. Kosower, Towards a Basis for Planar Two-Loop Integrals, Phys. Rev.D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].
[45] R.M. Schabinger, A New Algorithm For The Generation Of Unitarity-Compatible Integration By Parts Relations, JHEP01 (2012) 077 [arXiv:1111.4220] [INSPIRE]. · Zbl 1306.81359 · doi:10.1007/JHEP01(2012)077
[46] D.A. Kosower and K.J. Larsen, Maximal Unitarity at Two Loops, Phys. Rev.D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].
[47] K.J. Larsen, Global Poles of the Two-Loop Six-Point N = 4 SYM integrand, Phys. Rev.D 86 (2012) 085032 [arXiv:1205.0297] [INSPIRE].
[48] S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP10 (2012) 026 [arXiv:1205.0801] [INSPIRE]. · doi:10.1007/JHEP10(2012)026
[49] H. Johansson, D.A. Kosower and K.J. Larsen, Two-Loop Maximal Unitarity with External Masses, Phys. Rev.D 87 (2013) 025030 [arXiv:1208.1754] [INSPIRE].
[50] H. Johansson, D.A. Kosower and K.J. Larsen, An Overview of Maximal Unitarity at Two Loops, PoS(LL2012)066 [arXiv:1212.2132] [INSPIRE].
[51] M. Søgaard, Global Residues and Two-Loop Hepta-Cuts, JHEP09 (2013) 116 [arXiv:1306.1496] [INSPIRE]. · Zbl 1342.81318 · doi:10.1007/JHEP09(2013)116
[52] H. Johansson, D.A. Kosower and K.J. Larsen, Maximal Unitarity for the Four-Mass Double Box, arXiv:1308.4632 [INSPIRE].
[53] S. Badger, H. Frellesvig and Y. Zhang, Hepta-Cuts of Two-Loop Scattering Amplitudes, JHEP04 (2012) 055 [arXiv:1202.2019] [INSPIRE]. · Zbl 1348.81340 · doi:10.1007/JHEP04(2012)055
[54] P. Mastrolia and G. Ossola, On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes, JHEP11 (2011) 014 [arXiv:1107.6041] [INSPIRE]. · Zbl 1306.81357 · doi:10.1007/JHEP11(2011)014
[55] S. Badger, H. Frellesvig and Y. Zhang, An Integrand Reconstruction Method for Three-Loop Amplitudes, JHEP08 (2012) 065 [arXiv:1207.2976] [INSPIRE]. · doi:10.1007/JHEP08(2012)065
[56] Y. Zhang, Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic Geometry Methods, JHEP09 (2012) 042 [arXiv:1205.5707] [INSPIRE]. · doi:10.1007/JHEP09(2012)042
[57] S. Badger, H. Frellesvig and Y. Zhang, A Two-Loop Five-Gluon Helicity Amplitude in QCD, arXiv:1310.1051 [INSPIRE]. · Zbl 1348.81340
[58] B. Feng and R. Huang, The classification of two-loop integrand basis in pure four-dimension, JHEP02 (2013) 117 [arXiv:1209.3747] [INSPIRE]. · Zbl 1342.81228 · doi:10.1007/JHEP02(2013)117
[59] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering Amplitudes from Multivariate Polynomial Division, Phys. Lett.B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].
[60] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-Reduction for Two-Loop Scattering Amplitudes through Multivariate Polynomial Division, Phys. Rev.D 87 (2013) 085026 [arXiv:1209.4319] [INSPIRE].
[61] P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro and H. van Deurzen, The Integrand Reduction of One- and Two-Loop Scattering Amplitudes, PoS(LL2012)028 [arXiv:1209.5678] [INSPIRE]. · Zbl 1331.81218
[62] R.H. Kleiss, I. Malamos, C.G. Papadopoulos and R. Verheyen, Counting to One: Reducibility of One- and Two-Loop Amplitudes at the Integrand Level, JHEP12 (2012) 038 [arXiv:1206.4180] [INSPIRE]. · doi:10.1007/JHEP12(2012)038
[63] R. Huang and Y. Zhang, On Genera of Curves from High-loop Generalized Unitarity Cuts, JHEP04 (2013) 080 [arXiv:1302.1023] [INSPIRE]. · Zbl 1342.81353 · doi:10.1007/JHEP04(2013)080
[64] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes, arXiv:1307.5832 [INSPIRE]. · Zbl 1331.81218
[65] Z. Bern, J. Carrasco, H. Ita, H. Johansson and R. Roiban, On the Structure of Supersymmetric Sums in Multi-Loop Unitarity Cuts, Phys. Rev.D 80 (2009) 065029 [arXiv:0903.5348] [INSPIRE].
[66] M. Sogaard, Supersums for all supersymmetric amplitudes, Phys. Rev.D 84 (2011) 065011 [arXiv:1106.3785] [INSPIRE].
[67] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP03 (2010) 020 [arXiv:0907.5418] [INSPIRE]. · Zbl 1271.81098 · doi:10.1007/JHEP03(2010)020
[68] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE]. · doi:10.1103/PhysRevLett.105.061602
[69] V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett.B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].
[70] V.A. Smirnov and O. Veretin, Analytical results for dimensionally regularized massless on-shell double boxes with arbitrary indices and numerators, Nucl. Phys.B 566 (2000) 469 [hep-ph/9907385] [INSPIRE]. · Zbl 0956.81055
[71] J. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett.B 469 (1999) 225 [hep-ph/9909506] [INSPIRE]. · Zbl 0987.81500
[72] C. Anastasiou, T. Gehrmann, C. Oleari, E. Remiddi and J. Tausk, The tensor reduction and master integrals of the two loop massless crossed box with lightlike legs, Nucl. Phys.B 580 (2000) 577 [hep-ph/0003261] [INSPIRE]. · doi:10.1016/S0550-3213(00)00251-0
[73] V.A. Smirnov, Analytical result for dimensionally regularized massless on shell planar triple box, Phys. Lett.B 567 (2003) 193 [hep-ph/0305142] [INSPIRE]. · Zbl 1052.81570
[74] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
[75] A. Smirnov and V. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, arXiv:1302.5885 [INSPIRE]. · Zbl 1344.81031
[76] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE]. · Zbl 1219.81133
[77] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
[78] J.-P. Aguilar, D. Greynat and E. De Rafael, Muon Anomaly from Lepton Vacuum Polarization and The Mellin-Barnes Representation, Phys. Rev.D 77 (2008) 093010 [arXiv:0802.2618] [INSPIRE].
[79] S. Friot and D. Greynat, On convergent series representations of Mellin-Barnes integrals, J. Math. Phys.53 (2012) 023508 [arXiv:1107.0328] [INSPIRE]. · Zbl 1274.81169 · doi:10.1063/1.3679686
[80] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, (1977). · Zbl 0367.14001
[81] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, John Wiley & Sons, New York, (1978). · Zbl 0408.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.