×

Mathematical model of plant-virus interactions mediated by RNA interference. (English) Zbl 1343.92506

Summary: Cross-protection, which refers to a process whereby artificially inoculating a plant with a mild strain provides protection against a more aggressive isolate of the virus, is known to be an effective tool of disease control in plants. In this paper we derive and analyse a new mathematical model of the interactions between two competing viruses with particular account for RNA interference. Our results show that co-infection of the host can either increase or decrease the potency of individual infections depending on the levels of cross-protection or cross-enhancement between different viruses. Analytical and numerical bifurcation analyses are employed to investigate the stability of all steady states of the model in order to identify parameter regions where the system exhibits synergistic or antagonistic behaviour between viral strains, as well as different types of host recovery. We show that not only viral attributes but also the propagating component of RNA-interference in plants can play an important role in determining the dynamics.

MSC:

92D30 Epidemiology
92C80 Plant biology

Software:

GenStat
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Allen, L. J.S.; Langlais, M.; Phillips, C. J., The dynamics of two viral infections in a single host population with applications to hantavirus, Math. Biosci., 186, 191-217 (2003) · Zbl 1033.92029
[2] Andreasen, V.; Lin, J.; Levin, S. A., The dynamics of cocirculating influenza strains conferring partial cross-immunity, J. Math. Biol., 35, 825-842 (1997) · Zbl 0874.92023
[3] Beachy, R. N., Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation, Phil. Trans. Roy. Soc. Lond. B, 354, 659-664 (1999)
[4] Bendahmane, M.; Fitchen, J. H.; Zhang, G.; Beachy, R. N., Studies of coat protein-mediated resistance to tobacco mosaic tobamovirus: correlation between assembly of mutant coat proteins and resistance, J. Virol., 71, 7942-7950 (1997)
[5] Bergua, M.; Zwart, M. P.; El-Mohtar, C.; Shilts, T.; Elena, S. F.; Folimonova, S. Y., A viral protein mediates superinfection exclusion at the whole-organism level but is not required for exclusion at the cellular level, J. Virol., 88, 11327-11338 (2014)
[6] Bernstein, E.; Caudy, A. A.; Hammond, S. M.; Hannon, G. J., Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature, 409, 363-366 (2001)
[7] van den Bosch, F.; de Roos, A. M., The dynamics of infectious diseases in orchards with roguing and replanting as control strategy, J. Math. Biol., 35, 129-157 (1996) · Zbl 0865.92017
[8] Buckee, C. O.; Gupta, S., Infectious disease informatics, (Sintchenko, V., A Network Approach to Understanding Pathogen Population Structure (2010), Springer: Springer New York), 167-185
[9] Buckee, C. O.; Koelle, K.; Mustard, M. J.; Gupta, S., The effects of host contact network structure on pathogen diversity and strain structure, Proc. Natl. Acad. Sci. USA, 101, 10839-10844 (2004)
[10] Burdon, J. J.; Thrall, P. H., The fitness costs to plants of resistance to pathogens, Genome Biol., 4, 227 (2003)
[11] Caplen, N. J., Gene therapy progress and prospects. downregulating gene expression: the impact of RNA interference, Gene Ther., 11, 1241-1248 (2004)
[12] Castillo-Chavez, C.; Huang, W.; Li, J., Competitive exclusion in gonorrhea models and other sexually transmitted diseases, SIAM J. Appl. Math., 56, 494-508 (1996) · Zbl 0845.92021
[13] Chan, M. S.; Jeger, M. J., An analytical model of plant virus disease dynamics with roguing and replanting, J. Appl. Ecol., 31, 413-427 (1994)
[14] Chowda Reddy, R. V.; Dong, W.; Njock, T.; Rey, M. E.C.; Fondong, V. N., Molecular interaction between two cassava geminiviruses exhibiting cross-protection, Virus Res., 163, 169-177 (2012)
[15] Cisternas, J.; Gear, C. W.; Levin, S.; Kevrekidis, I. G., Equation-free modelling of evolving diseases: coarse-grained computations with individual-based models, Proc. R. Soc. A, 460, 2761-2779 (2004) · Zbl 1063.92046
[16] Ciupe, S. M.; Ribeiro, R. M.; Nelson, P. W.; Perelson, A. S., Modeling the mechanisms of acute hepatitis B virus infection, J. Theor. Biol., 247, 23-35 (2007) · Zbl 1455.92022
[18] Dietz, K., The estimation of the basic reproduction number for infectious diseases, Stat. Methods Med. Res., 2, 23-41 (1993)
[19] van den Driessche, P.; Watmough, J., Mathematical epidemiology, (Brauer, F.; van den Driessche, P.; Wu, J., Further Notes on the Basic Reproduction Number (2008), Springer: Springer Berlin)
[20] Escobar, M. A.; Dandekar, A. M., Noncoding RNAs: molecular biology and molecular medicine, (Barciszewski, J.; Erdmann, V. A., Post-Transcriptional Gene Silencing in Plants (2003), Kluwer Academic: Kluwer Academic Dordrecht), 129-140
[21] Ferguson, N. M.; Galvani, A. P.; Bush, R. M., Ecological and immunological determinants of influenza evolution, Nature, 422, 428-433 (2003)
[22] Ferreira, M. U.; da Silva Nunes, M.; Wunderlich, G., Antigenic diversity and immune evasion by malaria parasites, Clin. Diagn. Lab. Immunol., 11, 987-995 (2004)
[23] Frank, S. A., Immunology and Evolution of Infectious Disease (2002), Princeton University Press: Princeton University Press Princeton
[24] Frazer, B. D., Plant virus epidemiology and computer simulation of aphid populations, (Harris, K. F.; Maramorosch, K., Aphids as Virus Vectors (1977), Academic Press: Academic Press New York), 413-431
[26] Gal-On, A.; Shiboleth, Y., Natural resistance mechanisms of plants to viruses, (Loebenstein, G.; Carr, J. P., Cross-Protection (2006), Kluwer: Kluwer Dordrecht), 261-288
[27] Gog, J. R.; Grenfell, B. T., Dynamics and selection of many-strain pathogens, Proc. Natl. Acad. Sci. USA, 99, 17209-17214 (2002)
[28] Gomes, M. G.M.; Medley, G. F.; Nokes, D. J., On the determinants of population structure in antigenically diverse pathogens, Proc. Roy. Soc. B, 269, 227-233 (2002)
[29] Gupta, S.; Anderson, R. M., Population structure of pathogens: the role of immune selection, Parasitol. Today, 15, 497-501 (1999)
[30] Gupta, S.; Trenholme, K.; Anderson, R. M.; Day, K. P., Antigenic diversity and the transmission dynamics of plasmodium falciparum, Science, 263, 961-963 (1994)
[31] Gupta, S.; Maiden, M. C.J.; Feavers, I. M.; Nee, S.; May, R. M.; Anderson, R. M., The maintenance of strain structure in populations of recombining infectious agents, Nat. Med., 2, 437-442 (1996)
[32] Gutierrez, A. P.; Havenstein, D. E.; Nix, H. A.; Moore, P. A., The ecology of Aphis craccivora koch and subterranean clover stunt virus in South-East Australia. II A model of cowpea aphid populations in temperate pastures, J. Appl. Ecol., 11, 1-20 (1974)
[33] Hammond, S. M.; Bernstein, E.; Beach, D.; Hannon, G. J., An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature, 404, 293-296 (2000)
[34] Heesterbeek, J. A.P.; Dietz, K., The concept of \(R_0\) in epidemic theory, Stat. Neerl., 50, 89-110 (1996) · Zbl 0854.92018
[35] Heinen, M., Analytical growth equations and their Genstat 5 equivalents, Neth. J. Agric. Sci., 47, 67-89 (1999)
[36] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 599-653 (2000) · Zbl 0993.92033
[37] Himber, C.; Dunoyer, P., The tracking of intercellular small RNA movement, Methods Mol. Biol., 1217, 275-281 (2015)
[38] Hinrichs, J.; Berger, S.; Shaw, J. G., A hypersensitive response-like mechanism is involved in resistance of potato plants bearing the Ry(sto) gene to the potyviruses potato virus Y and tobacco etch virus, J. Gen. Virol., 79, 167-176 (1998)
[39] Irwin, M. E.; Ruesink, W. G.; Isard, S. A.; Kampmeier, G. E., Mitigating epidemics caused by non-persistently transmitted aphid-borne viruses: the role of the pliant environment, Virus Res., 71, 185-211 (2000)
[40] Jeger, M. J.; van den Bosch, F.; Madden, L. V., Modelling virus- and host-limitation in vectored plant disease epidemics, Virus Res., 159, 215-222 (2011)
[41] Kawakami, S.; Watanabe, Y.; Beachy, R. N., Tobacco mosaic virus infection spreads cell to cell as intact replication complexes, Proc. Natl. Acad. Sci. USA, 101, 6291-6296 (2004)
[42] Kirtani, K.; Sasaba, T., An experimental validation of the systems model for the prediction of rice dwarf virus infection, Appl. Entomol. Zool., 13, 209-214 (1978)
[43] Kryazhimskiy, S.; Dieckmann, U.; Levin, S. A.; Dushoff, J., On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A, PLoS Comput. Biol., 3, e159 (2007)
[44] Kuntz, M., Plant biotechnology, (Ricroch, A.; Chopra, S.; Fleischer, S. J., Is it possible to overcome the GMO controversy? Some elements for a philosophical perspective (2014), Springer: Springer Berlin), 107-111
[45] Lalonde, S.; Wipf, D.; Frommer, W. B., Transport mechanisms for organic forms of carbon and nitrogen between source and sink, Ann. Rev. Plant Biol., 55, 341-372 (2004)
[46] Lee, Y.; Tscherne, D.; Yun, S., Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication, J. Virol., 79, 3231-3242 (2005)
[47] Levin, S. A.; Dushoff, J.; Plotkin, J. B., Evolution and persistence of influenza a and other diseases, Math. Biosci., 188, 17-28 (2004) · Zbl 1036.92017
[48] Liang, D.; White, R. G.; Waterhouse, P. M., Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement, Plant Physiol., 159, 984-1000 (2012)
[49] Lipsitch, M.; O’Hagan, J. J., Patterns of antigenic diversity and the mechanisms that maintain them, J. Roy. Soc. Interface, 4, 787-802 (2007)
[50] Madden, L. V.; Jeger, M. J.; van den Bosch, F., A theoretical assessment of the effects of vector-virus transmission mechanism on plant virus disease epidemics, Phytopathology, 90, 576-594 (2000)
[51] Malapi-Nelson, M.; Wen, R.-H.; Ownley, B. H.; Hajimorad, M. R., Co-infection of soybean with Soybean mosaic virus and Alfalfa mosaic virus results in disease synergism and alteration in accumulation level of both viruses, Plant Dis., 93, 1259-1264 (2009)
[52] Mauck, K. E.; De Moraes, C. M.; Mescher, M. C., eptive chemical signals induced by a plant virus attract insect vectors to inferior hosts, Proc. Natl. Acad. Sci. USA, 107, 3600-3605 (2010)
[53] Melnyk, C. W.; Molnar, A.; Baulcombe, D. C., Intercellular and systemic movement of RNA silencing signals, EMBO J., 30, 3553-3563 (2011)
[54] Moreno-Delafuente, A.; Garzo, E.; Moreno, A.; Fereres, A., A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread, PLoS One, 8, e61543 (2013)
[55] Neofytou, G.; Kyrychko, Y. N.; Blyuss, K. B., Time-delayed model of immune response in plants, J. Theor. Biol., 389, 28-39 (2016) · Zbl 1343.92294
[56] Opalka, N.; Brugidou, C.; Bonneau, C.; Nicole, M.; Beachy, R. N.; Yeager, M.; Fauquet, C., Movement of rice yellow mottle virus between xylem cells through pit membranes, Proc. Natl. Acad. Sci. USA, 95, 3323-3328 (1998)
[57] Paine, C. E.T.; Marthews, T. R.; Vogt, D. R.; Purves, D.; Rees, M.; Hector, A.; Turnbull, L. A., How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists, Meth. Ecol. Evol., 3, 245-256 (2012)
[58] Pennazio, S.; Roggero, P.; Conti, M., A history of plant virology. cross protection, New Microbiol., 24, 99-114 (2001)
[59] Perelson, A. S., Modelling viral and immune system dynamics, Nat. Rev. Imm., 2, 28-36 (2002)
[60] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 3-44 (1999) · Zbl 1078.92502
[61] Pruss, G.; Ge, X.; Shi, X. M.; Carrington, J. C.; Vance, V. B., Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses, Plant Cell., 9, 859-868 (1997)
[62] Pumplin, N.; Voinnet, O., RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence, Nat. Rev. Microbiol., 11, 745-760 (2013)
[63] Purcell, A. H.; Almeida, R. P.P., Encyclopedia of plant and crop science, (Dekker, M., Insects as vectors of disease agents (2005), Taylor and Francis: Taylor and Francis London)
[64] Raja, P.; Sanville, B. C.; Buchmann, R. C.; Bisaro, D. M., Viral genome methylation as an epigenetic defense against geminiviruses, J. Virol., 82, 8997-9007 (2008)
[65] Ratcliff, F. G.; MacFarlane, S. A.; Baulcombe, D. C., Gene silencing without DNA: RNA-mediated cross-protection between viruses, Plant Cell., 11, 1207-1215 (1999)
[66] Recker, M.; Blyuss, K. B.; Simmons, C. P.; Hien, T. T.; Wills, B.; Farrar, J.; Gupta, S., Immunological serotype interactions and their effect on the epidemiological pattern of dengue, Proc. Roy. Soc. B, 276, 2541-2548 (2009)
[67] Roossinck, M. J., Symbiosis versus competition in plant virus evolution, Nat. Rev. Microbiol., 3, 917-924 (2005)
[68] Savary, S.; Ficke, A.; Aubertot, J.-N.; Hollier, C., Crop losses due to diseases and their implications for global food production losses and food security, Food Secur., 4, 519-537 (2012)
[69] Sijen, T.; Kooter, J. M., Post-transcriptional gene-silencing: RNAs on the attack or on the defense?, BioEssays, 22, 520-531 (2000)
[70] Silva, J. M.; Hammond, S. M.; Hannon, G. J., RNA interference: a promising approach to antiviral therapy?, Trends Mol. Med., 8, 505-508 (2002)
[71] Soifer, H. S.; Rossi, J. J.; Saetrom, P., MicroRNAs in disease and potential therapeutic applications, Mol. Ther., 15, 2070-2079 (2007)
[72] Takeshita, M., Molecular biological study of host specificity and cross-protection of cucumber mosaic virus, J. Gen. Plant Path, 71, 459 (2005)
[73] Takeshita, M.; Shigemune, N.; Kikuhara, K.; Furuya, N.; Takanami, Y., Spatial analysis for exclusive interactions between subgroups I and II of Cucumber mosaic virus in cowpea, Virology, 328, 45-51 (2004)
[74] Tian, D.; Traw, M. B.; Chen, J. Q.; Kreitman, M.; Bergelson, J., Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana, Nature, 423, 74-77 (2003)
[75] Tridane, A.; Kuang, Y., Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells, Math. Biosci. Eng., 7, 175-189 (2010) · Zbl 1192.92026
[76] Wan, J.; Cabanillas, D. G.; Zheng, H.; Laliberté, J.-F., Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes, Plant Physiol., 167, 1374-1388 (2015)
[77] Wassenegger, M., RNA-directed DNA methylation, Plant Mol. Biol., 43, 203-220 (2000)
[78] Waterhouse, P. M.; Smith, N. A.; Wang, M. B., Virus resistance and gene silencing: killing the messenger, Trends Plant Sci., 4, 452-457 (1999)
[79] Wege, C.; Siegmund, D., Synergism of a DNA and an RNA virus: enhanced tissue infiltration of the begomovirus abutilon mosaic virus (AbMV) mediated by Cucumber mosaic virus (CMV), Virology, 357, 10-28 (2007)
[80] Wodarz, D.; Christensen, J. P.; Thomsen, A. R., Trends Imm., 23, 194-200 (2002)
[81] Zhang, C.; Ruvkun, G., New insights into siRNA amplification and RNAi, RNA Biol., 9, 1045-1049 (2012)
[82] Zhang, T.; Meng, X.; Song, Y.; Li, Z., Dynamical analysis of delayed plant disease models with continuous or impulsive cultural control strategies, Abstr. Appl. Anal., 2012, 1-25 (2012) · Zbl 1237.93134
[83] Zhang, X. S.; Holt, J.; Colvin, J., Mathematical models of host plant infection by helper-dependent virus complexes: why are helper viruses always avirulent?, Phytopathology, 90, 85-93 (2000)
[84] Zhang, X.-S.; Holt, J., Mathematical models of cross protection in the epidemiology of plant-virus diseases, Phytopath, 91, 924-934 (2001)
[85] Zhou, C.; Zhou, Y., Strategies for viral cross protection in plants, Meth. Mol. Biol., 894, 69-81 (2012)
[86] Zvereva, A. S.; Pooggin, M. M., Silencing and innate immunity in plant defense against viral and non-viral pathogens, Viruses, 4, 2578-2597 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.