×

Stability of the Richardson extrapolation combined with some implicit Runge-Kutta methods. (English) Zbl 1348.65114

Summary: The implementation of the Richardson extrapolation in combination with different numerical methods for solving systems of ordinary differential equations (ODEs) is relatively simple, but the important requirement for stability of the computational process may cause serious difficulties. For example, the commonly used by scientists and engineers trapezoidal rule has good stability properties, but its combination with the Richardson extrapolation is unstable. Therefore, it is necessary to study in advance and very carefully the stability of the new numerical methods arising when the scientists and the engineers use this computational device in combination with different algorithms for solving systems of ODEs.
We are presenting a systematic investigation of the implementation of Richardson extrapolation for two implicit Runge-Kutta methods. Three numerical examples, including an atmospheric chemical scheme used successfully in several extensive environmental studies and described mathematically by a very stiff and badly scaled nonlinear system of ODEs, are presented to illustrate the advantages of the presented approach. The numerical results show that not only are the computations stable, but also the achieved accuracy is higher when the Richardson extrapolation is additionally applied. It will be possible to derive similar stability and accuracy results for other implicit Runge-Kutta methods.

MSC:

65L20 Stability and convergence of numerical methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
86A10 Meteorology and atmospheric physics
65L04 Numerical methods for stiff equations

Software:

LAPACK; RODAS; LAPACK95
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dahlquist, G., A special stability problem for linear multistep methods, BIT, 3, 27-43 (1963) · Zbl 0123.11703
[2] Burrage, K., Parallel and Sequential Methods for Ordinary Differential Equations (1992), Oxford University Press: Oxford University Press Oxford, New York
[3] Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2003), Wiley: Wiley New York · Zbl 1032.65512
[4] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations: I Nonstiff (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0638.65058
[5] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations: II Stiff and DifferentialAlgebraic Problems (1991), Springer-Verlag: Springer-Verlag Berlin
[6] Hundsdorfer, W.; Verwer, J. G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 1030.65100
[7] Lambert, J. D., Numerical Methods for Ordinary Differential Equations (1991), Wiley: Wiley New York · Zbl 0745.65049
[8] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff ODE’s, SIAM J. Numer. Anal., 14, 1006-1021 (1977) · Zbl 0374.65038
[9] Cruziex, M., Sur les méthodes de Runge-Kutta pour l’approximation des problemes d’évolution, (Glowiski, R.; Lions, J. L., Computing Methods in Applied Science and Engineering, Second International Symposium, 1975. Computing Methods in Applied Science and Engineering, Second International Symposium, 1975, Lecture Notes in Economical and Mathematical Systems, vol. 134 (1976), Springer-Verlag: Springer-Verlag Berlin), 206-233
[10] Nørsett, S. P., Semi-explicit Runge-Kutta methods, in: Report Mathematics and Computations, No. 6/74 (1976), Department of Mathematics, University of Trondheim
[11] Stewart, G. W., Introduction to Matrix Computations (1973), Academic Press: Academic Press New York, San Francisco, London · Zbl 0302.65021
[12] Wilkinson, J. H., (Rounding Errors in Algebraic Processes. Rounding Errors in Algebraic Processes, Notes in Applied Sciences, vol. 32 (1963), HMSO: HMSO London) · Zbl 0113.10606
[13] Wilkinson, J. H., The Algebraic Eigenvalue Problem (1965), Oxford University Press: Oxford University Press Oxford, London · Zbl 0258.65037
[14] Richardson, L. F., The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 210, 307-357 (1911) · JFM 42.0873.02
[15] Richardson, L. F., The deferred approach to the limit, I—single lattice, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 226, 299-349 (1927) · JFM 53.0432.01
[16] Faragó, I.; Havasi, Á.; Zlatev, Z., Efficient implementation of stable Richardson extrapolation algorithms, Comput. Math. Appl., 60, 2309-2325 (2010) · Zbl 1205.65014
[17] Zlatev, Z.; Faragó, I.; Havasi, Á., Stability of the Richardson Extrapolation together with the \(\theta \)-method, J. Comput. Appl. Math., 235, 507-520 (2010) · Zbl 1201.65134
[18] Ehle, B. L., High order A-stable methods for numerical solution of systems of DEs, BIT, 8, 276-278 (1968) · Zbl 0176.14604
[19] Zlatev, Z.; Georgiev, K.; Dimov, I., Studying absolute stability properties of the Richardson extrapolation combined with explicit Runge-Kutta methods, Comput. Math. Appl., 67, 12, 2294-2307 (2014) · Zbl 1368.65115
[20] Hamming, R. W., Numerical Methods for Scientists and Engineers (1962), McGraw Hill Book Company: McGraw Hill Book Company New York, San Francisco, Toronto, London · Zbl 0952.65500
[21] Alexandrov, V.; Owczarz, W.; Thomsen, P. G.; Zlatev, Z., Parallel runs of large air pollution models on a grid of SUN computers, Math. Comput. Simulation, 65, 557-577 (2004)
[22] Bastrup-Birk, A.; Brandt, J.; Uria, I.; Zlatev, Z., Studying cumulative ozone exposures in Europe during a 7-year period, J. Geophys. Res., 102, 23917-23935 (1997)
[23] Zlatev, Z., Computer Treatment of Large Air Pollution Models (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston, London, now distributed by Springer-Verlag, Berlin · Zbl 0852.65058
[24] Zlatev, Z.; Dimov, I., Computational and Numerical Challenges in Environmental Modelling (2006), Elsevier: Elsevier Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sidney, Tokyo · Zbl 1120.65103
[25] Zlatev, Z.; Moseholm, L., Impact of climate changes on pollution levels in Denmark, Ecol. Model., 217, 305-319 (2008)
[26] Zlatev, Z.; Georgiev, K.; Dimov, I., Influence of climatic changes on air pollution levels in the Balkan Peninsula, Comput. Math. Appl., 65, 3, 544-562 (2013) · Zbl 1319.86004
[27] Zlatev, Z.; Syrakov, D., A fine resolution modelling study of pollution levels in Bulgaria. Part 1: \(SO_x\) and \(NO_x\) pollution, Int. J. Environ. Pollut., 22, 1-2, 186-202 (2004)
[28] Zlatev, Z.; Syrakov, D., A fine resolution modelling study of pollution levels in Bulgaria. Part 2: High ozone levels, Int. J. Environ. Pollut., 22, 1-2, 203-222 (2004)
[29] Abdalmogith, S.; Harrison, R. M.; Zlatev, Z., Intercomparison of inorganic aerosol concentrations in the UK with predictions of the Danish Eulerian Model, J. Atmos. Chem., 54, 43-66 (2004)
[30] Ambelas Skjøth, C.; Bastrup-Birk, A.; Brandt, J.; Zlatev, Z., Studying variations of pollution levels in a given region of Europe during a long time-period, Syst. Anal. - Modelling - Simul., 37, 297-311 (2000)
[32] Geernaert, G.; Zlatev, Z., Studying the influence of the biogenic emissions on the AOT40 levels in Europe, Int. J. Environ. Pollut., 23, 12, 29-41 (2004)
[33] Zlatev, Z., Impact of future climate changes on high ozone levels in European suburban areas, Clim. Change, 101, 447-483 (2010)
[34] Havasi, Á.; Zlatev, Z., Trends of Hungarian air pollution levels on a long time-scale, Atmos. Environ., 36, 4145-4156 (2002)
[35] Zlatev, Z.; Havasi, Á.; Faragó, I., Influence of climatic changes on pollution levels in Hungary and its surrounding countries, Atmosphere, 2, 201-221 (2011)
[36] Harrison, R. M.; Zlatev, Z.; Ottley, C. J., A comparison of the predictions of an Eulerian atmospheric transport chemistry model with experimental measurements over the North Sea, Atmos. Environ., 28, 497-516 (1994)
[39] Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Ostrouchov, S.; Sorensen, D., LAPACK: Users’ Guide (1992), SIAM: SIAM Philadelphia · Zbl 0843.65018
[40] Barker, V. A.; Blackford, L. S.; Dongarra, J.; Du Croz, J.; Hammarling, S.; Marinova, M.; Wasnewski, J.; Yalamov, P., LAPACK95: Users’ Guide (2001), SIAM: SIAM Philadelphia · Zbl 0992.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.