×

Genetics of metabolic resistance. (English) Zbl 1346.92027

Summary: Herbicide resistance has become a major issue for many weeds. Metabolic resistance refers to the biochemical processes within organisms that degrade herbicides to less toxic compounds, resulting in a shift of the dose response curve. This type of resistance involves polygenic inheritance. A model is presented linking the biochemical pathway of amino acid synthesis and the detoxifying pathway of an inhibitor of the key enzyme ALS. From this model, resistance factors for each biotype are derived, which are then applied to a polygenic population genetic model for an annual weed plant. Polygenic inheritance is described by a new approach based on tensor products of heredity matrices. Important results from the model are that low dose regimes favour fast emergence of resistant biotypes and that the emergence of resistant biotypes occurs as abrupt outbreaks. The model is used to evaluate strategies for the management of metabolic resistance.

MSC:

92C40 Biochemistry, molecular biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

Software:

drc; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beckie, H. J., Herbicide-resistant weeds: management tactics and practices, Weed Technol., 20, 793-814 (2006)
[2] Powles, S. B.; Yu, Q., Evolution in action: plant resistant to herbicide, Annu. Rev. Plant Biol., 61, 317-347 (2010)
[3] Tal, A.; Kotoula-Styka, E.; Rubin, B., Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides, Crop Prot., 19, 467-472 (2000)
[4] Han, H.; Yu, Q.; Vila-Aiubb, M.; Powles, S. B., Genetic inheritance of cytochrome 450-mediated metabolic resistance to chlorsulfuron, Crop Prot., 65, 57-63 (2014)
[5] Neve, P.; Powles, S. B., High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance, Heredity, 95, 485-492 (2005)
[6] Maxwell, B.; Roush, M. L.; Radosevich, S. R., Predicting the evolution and dynamics of herbicide resistance in weed populations, Weed Technol., 4, 2-13 (1990)
[7] Richter, O.; Zwerger, P.; Böttcher, U., Modeling spatio-temporal dynamics of herbicide resistance, Weed Res., 42, 52-64 (2002)
[8] Duggleby, R. G.; McCourt, J. A.; Guddat, L. W., Structure and mechanism of inhibition of plant acetohydroxyacid synthase, Plant Physiol. Biochem., 46, 3, 309-324 (2008)
[10] Langemann, D.; Richter, O.; Vollrath, A., Multi-gene-loci inheritance in resistance modeling, Math. Biosci., 242, 17-24 (2013) · Zbl 1257.92028
[11] Chin-Rang, Y.; Shapir, B. E.; Hung, S.; Mjolsness, E. D.; Hatfield, G. W., A mathematical model for the branched chain amino acid biosynthetic pathways of escherichia coli K12, J. Biol. Chem., 280, 11224-11232 (2005)
[12] Vinogradov, V.; Vyazmensky, M.; Engel, S.; Belenky, I.; Kaplun, A.; Kryukov, O.; Barak, Z.; Chipman, D. M., Acetohydroxyacid synthase isozyme I from E. Coli has unique catalytic and regulatory properties, Biochim. Biophys. Acta, 1760, 356-363 (2006)
[13] Werck-Reichhart, D.; Hehn, A.; Didierjean, L., Cytochromes P450 for engineering, Trends Plant Sci., 5, 3 (2000)
[14] Suresh, P. K.; Varadharaj, V. A.; Mathiyazhagan, J., ABC transporters in anticancer drug transport? Lessons for therapy, drug development and delivery systems, Int. J. Drug Dev. Res., 7, 1, 280-285 (2015)
[15] Knezevic, S. Z.; Streibig, J.; Ritz, C., Utilizing R software package for dose-response studies: the concept and data analysis, Weed Technol., 21, 840-848 (2007)
[16] Renton, M.; Diggle, A.; Manali, IS; Powles, S., Does cutting herbicide threaten the sustainablity of weed management in cropping systems, J. Theor. Biol., 283, 14-27 (2011) · Zbl 06941083
[17] Pang, S.; Duan, L.; Liu, Z.; Song, X.; Li, X.; Wang, C., Co-induction of a glutathione-\(S\)-transferase, a glutathione transporter and an ABC transporter in maize by xenobiotics, PLoS One, 7, 7, e40712 (2012)
[18] Yuan, J. . S.; Tranel, P. J.; Stewart, C. N., Non-target-site herbicide resistance: a family business, Trends Plant Sci., 12, 1, 6-13 (2006)
[19] Cummins, I.; Wortley, D. J.; Sabbadinb, F.; Heb, Z.; Christopher, R.; Coxona, C. R.; Straker, H. E.; Nathan, D.; Sellars, J. D.; Knight, K.; Edwards, L.; Hughes, D.; Kaundund, S. S.; Hutchings, S. J.; Steel, P. G.; Edwards, R., Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds, Proc. Natl. Acad. Sci., 110, 15, 5812-5817 (2013)
[20] Yu, Q.; Han, H.; Cawthray, G. R.; Wang, S. F.; Powles, S. B., Enhanced rates of herbicide metabolism in low herbicide-dose selected resistant Lolium rigidum, Plant Cell Environ., 36, 4, 818-827 (2013)
[21] Manalil, S.; Busi, R.; Renton, M.; Powles, S. B., Rapid evolution of herbicide resistance by low herbicide doses, Weed Sci., 59, 210-217 (2011)
[22] Yu, Q.; Powles, S. B., Resistance to AHAS inhibitor herbicides: current understanding, Pest Manag. Sci., 70, 1340-1350 (2014)
[23] Vila-Aiub, M. M.; Neve, P.; Roux, F., A unified approach to the estimation and interpretation of resistance costs in plant, Heredity, 107, 386-394 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.