×

On the degradation of granular materials due to internal erosion. (English) Zbl 1345.74028

Summary: A new state-based elasto-plastic constitutive relationship along with the discrete element model is established to estimate the degradation of granular materials due to internal erosion. Four essential effects of internal erosion such as the force network damage and relaxation are proposed and then incorporated into the constitutive relationship to formulate internal erosion impacts on the mechanical behavior of granular materials. Most manifestations in the degradation of granular materials, such as reduction of peak strength and dilatancy are predicted by the modified constitutive relationship in good agreement with the discrete element method (DEM) simulation. In particular, the sudden reduction of stress for conspicuous mass erosion in a high stress state is captured by force network damage and the relaxation mechanism. It is concluded that the new modified constitutive relationship is a potential theory to describe the degradation of granular materials due to internal erosion and would be very useful, for instance, in the prediction and assessment of piping disaster risk during the flood season.

MSC:

74E30 Composite and mixture properties
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

Software:

YADE
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Richards, K.S., Reddy, K.R.: Critical appraisal of piping phenomena in earth dams. Bull. Eng. Geol. Environ. 66, 381-402 (2007) · doi:10.1007/s10064-007-0095-0
[2] Vardoulakis, I.: Fluidisation in artesian flow conditions: Hydromechanically unstable granular media. Geotechnique 54, 165-177 (2004) · Zbl 1393.74026
[3] Bendahmane, F., Marot, D., Alexis, A.: Experimental parametric study of suffusion and backward erosion. J. Geotech. Geoenviron. Eng. 134, 57-67 (2008) · doi:10.1061/(ASCE)1090-0241(2008)134:1(57)
[4] Chang, D.S., Zhang, L.M.: A stress-controlled erosion apparatus for studying internal erosion in soils. Geotech. Test. J. 34, 579-589 (2011)
[5] Foster, M., Fell, R.: Assessing embankment dam filters that do not satisfy design criteria. J. Geotech. Geoenviron. Eng. 127, 398-407 (2001) · doi:10.1061/(ASCE)1090-0241(2001)127:5(398)
[6] Fujisawa, K., Murakami, A., Nishimura, S.-I.: Computational method to analyze internal erosion and transport of soil particles. Trans. Jpn Soc Irrig. Drain. Rural Eng. 77, 85-93 (2009)
[7] Peng, B., Zhang, Z.: Numerical simulation of seepage failure of levee foundation. In: Proceedings of the 14th Asian Congress of Fluid Mechanics. Hanoi and Halong, Vietnam, 15-19 Oct. (2013)
[8] Bonelli, S.: Erosion of Geomaterials. Wiley, London (2012) · doi:10.1002/9781118561737
[9] Fu, Z.D., Li, J.C.: Strength softening models of soil and its application in rainfall-induced landslide simulation. Theor. Appl. Mech. Lett. 3, 042002 (2013) · doi:10.1063/2.1304202
[10] Papamichos, E.: Erosion and multiphase flow in porous media application to sand production. Eur. J. Environ. Civ. Eng.14, 1129-1154 (2010) · Zbl 1393.74026
[11] Papamichos, E., Vardoulakis, I., Tronvoll, J., et al.: Volumetric sand production model and experiment. Int. J. Numer. Anal. Methods Geomech. 25, 789-808 (2001) · Zbl 0986.74515
[12] Hicher, P.Y.: Modelling the impact of particle removal on granular material behaviour. Geotechnique 63, 118-128 (2013) · doi:10.1680/geot.11.P.020
[13] Sterpi, D.: Effects of the erosion and transport of fine particles due to seepage flow. Int. J. Geomech. 3, 111-122 (2003) · doi:10.1061/(ASCE)1532-3641(2003)3:1(111)
[14] Fujisawa, K., Murakami, A., Nishimura, S., et al.: Simultaneous modeling of internal erosion and deformation of soil structures. Geoenviron. Eng. Geotech. 204, 71-78 (2010) · doi:10.1061/41105(378)11
[15] Scholtès, L., Hicher, P.-Y., Sibille, L.: Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. C. R. Mec. 338, 627-638 (2010) · Zbl 1393.74026 · doi:10.1016/j.crme.2010.10.003
[16] Manzari, M.T., Dafalias, Y.F.: A critical state two-surface plasticity model for sands. Geotechnique 47, 255-272 (1997) · doi:10.1680/geot.1997.47.2.255
[17] Cubrinovski, M.T., Ishihara, K.: Modeling of sand behavior based on state concept. Soils Found. 38, 115-127 (1998) · doi:10.3208/sandf.38.3_115
[18] Gajo, A., Wood, M.: Severn-Trent sand: A kinematic-hardening constitutive model: the q-p formulation. Geotechnique 49, 595-614 (1999)
[19] Houlsby, G.: The work input to an unsaturated granular material. Geotechnique 47, 193-196 (1997) · Zbl 1257.74189
[20] Wan, R., Guo, P.: A simple constitutive model for granular soils: Modified stress-dilatancy approach. Comput. Geotech. 22, 109-133 (1998) · doi:10.1016/S0266-352X(98)00004-4
[21] Li, X., Dafalias, Y.: Dilatancy for cohesionless soils. Geotechnique 50, 449-460 (2000) · doi:10.1680/geot.2000.50.4.449
[22] Wood, D.M.: Geotechnical Modelling. Taylor & Francis, New York (2003)
[23] Been, K., Jefferies, M.: A state parameter for sands. Geotechnique 35, 99-112 (1985) · doi:10.1680/geot.1985.35.2.99
[24] Gao, Z.W., Zhao, J.D., Li, X.S., et al.: A critical state sand plasticity model accounting for fabric evolution. Int. J. Numer. Anal. Methods Geomech. 38, 370-390 (2014)
[25] Scholtes, L., Hicher, P.Y., Sibille, L.: Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. C. R. Mec. 338, 627-638 (2010) · Zbl 1393.74026 · doi:10.1016/j.crme.2010.10.003
[26] Wang, X.L., Li, J.C.: Numerical triaxial apparatus and application. Appl. Mech. Mater. 353, 3251-3255 (2013) · doi:10.4028/www.scientific.net/AMM.353-356.3251
[27] Muir Wood, D., Maeda, K.: Changing grading of soil: effect on critical states. Acta. Geotech. 3, 3-14 (2008) · doi:10.1007/s11440-007-0041-0
[28] Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47-65 (1979) · doi:10.1680/geot.1979.29.1.47
[29] Kozicki, J., Donze, F.V.: Yade-open dem: an open-source software using a discrete element method to simulate granular material. Eng. Comput. 26, 786-805 (2009) · Zbl 1257.74189 · doi:10.1108/02644400910985170
[30] Wang, X.L., Li, J.C.: Simulation of triaxial response of granular materials by modified DEM. Sci. China-Phys. Mech. Astron. 57, 2297-2308 (2014)
[31] Sun, Q.C., Song, S.X., Jin, F., et al.: Elastic energy and relaxation in triaxial compressions. Granul. Matter. 13, 743-750 (2011) · doi:10.1007/s10035-011-0288-x
[32] Zhao, J.D., Shan, T.: Numerical modeling of fluid-particle interaction in granular media. Theor. Appl. Mech. Lett. 3, 021007 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.