×

Constructing Markov logic networks from first-order default rules. (English) Zbl 1347.68333

Inoue, Katsumi (ed.) et al., Inductive logic programming. 25th international conference, ILP 2015, Kyoto, Japan, August 20–22, 2015. Revised selected papers. Cham: Springer (ISBN 978-3-319-40565-0/pbk; 978-3-319-40566-7/ebook). Lecture Notes in Computer Science 9575. Lecture Notes in Artificial Intelligence, 91-105 (2016).
Summary: Expert knowledge can often be represented using default rules of the form “if A then typically B”. In a probabilistic framework, such default rules can be seen as constraints on what should be derivable by MAP-inference. We exploit this idea for constructing a Markov logic network \(\mathcal {M}\) from a set of first-order default rules \(D\), such that MAP inference from \(\mathcal {M}\) exactly corresponds to default reasoning from \(D\), where we view first-order default rules as templates for the construction of propositional default rules. In particular, to construct appropriate Markov logic networks, we lift three standard methods for default reasoning. The resulting Markov logic networks could then be refined based on available training data. Our method thus offers a convenient way of using expert knowledge for constraining or guiding the process of learning Markov logic networks.
For the entire collection see [Zbl 1339.68010].

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
68T05 Learning and adaptive systems in artificial intelligence
68T30 Knowledge representation

Software:

Sat4j; Tuffy; RockIt
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Benferhat, S., Bonnefon, J.F., da Silva Neves, R.: An overview of possibilistic handling of default reasoning, with experimental studies. Synthese 146(1–2), 53–70 (2005) · Zbl 1079.03505 · doi:10.1007/s11229-005-9069-6
[2] Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artif. Intell. 92(1–2), 259–276 (1997) · Zbl 1017.68539 · doi:10.1016/S0004-3702(97)00012-X
[3] Benferhat, S., Dubois, D., Prade, H.: Practical handling of exception-tainted rules and independence information in possibilistic logic. Appl. Intell. 9(2), 101–127 (1998) · doi:10.1023/A:1008259801924
[4] Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic semantics of conditional knowledge bases. J. Log. Comput. 9(6), 873–895 (1999) · Zbl 0945.68166 · doi:10.1093/logcom/9.6.873
[5] Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiability, Boolean Model. Comput. 7, 50–64 (2010)
[6] de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceeding of the 19th Joint Conference on Artificial Intelligence, p. 1319 (2005) · Zbl 1213.68619
[7] de Saint-Cyr, F.D., Lang, J., Schiex, T.: Penalty logic and its link with Dempster-Shafer theory. In: Proceedings of the 10th International Conference on Uncertainty in Artificial Intelligence, pp. 204–211 (1994) · doi:10.1016/B978-1-55860-332-5.50031-6
[8] Friedman, N., Halpern, J.Y., Koller, D.: First-order conditional logic for default reasoning revisited. ACM Trans. Comput. Log. 1(2), 175–207 (2000) · Zbl 1365.68404 · doi:10.1145/359496.359500
[9] Geffner, H., Pearl, J.: Conditional entailment: bridging two approaches to default reasoning. Artif. Intell. 53(2), 209–244 (1992) · Zbl 1193.68235 · doi:10.1016/0004-3702(92)90071-5
[10] Goldszmidt, M., Morris, P., Pearl, J.: A maximum entropy approach to nonmonotonic reasoning. IEEE Trans. Pattern Anal. Mach. Intell. 15(3), 220–232 (1993) · Zbl 05110953 · doi:10.1109/34.204904
[11] Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350 (1990) · Zbl 0723.03007 · doi:10.1016/0004-3702(90)90019-V
[12] Kern-Isberner, G., Thimm, M.: A ranking semantics for first-order conditionals. In: Proceedings of the 20th European Conference on Artificial Intelligence, pp. 456–461 (2012) · Zbl 1327.68254
[13] Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990) · Zbl 0782.03012 · doi:10.1016/0004-3702(90)90101-5
[14] Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55(1), 1–60 (1992) · Zbl 0762.68057 · doi:10.1016/0004-3702(92)90041-U
[15] Niu, F., Ré, C., Doan, A., Shavlik, J.W.: Tuffy: scaling up statistical inference in markov logic networks using an RDBMS. PVLDB 4(6), 373–384 (2011)
[16] Noessner, J., Niepert, M., Stuckenschmidt, H., Rockit.: Exploiting parallelism and symmetry for map inference in statistical relational models. In: Proceedings of the 27th Conference on Artificial Intelligence, AAAI (2013)
[17] Pápai, T., Ghosh, S., Kautz, H.: Combining subjective probabilities and data in training markov logic networks. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 90–105. Springer, Heidelberg (2012) · Zbl 06167305 · doi:10.1007/978-3-642-33460-3_11
[18] Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, Burlington (1988) · Zbl 0746.68089
[19] Pearl, J., System, Z.: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. In: Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, pp. 121–135 (1990)
[20] Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006) · Zbl 1470.68221 · doi:10.1007/s10994-006-5833-1
[21] Riedel, S.: Improving the accuracy and efficiency of MAP inference for Markov logic. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 468–475 (2008)
[22] Tversky, A., Kahneman, D.: Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev. 90(4), 293 (1983) · doi:10.1037/0033-295X.90.4.293
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.