×

Lagrangian Jacobian inverse for nonholonomic robotic systems. (English) Zbl 1348.70020

Summary: The motion planning problem for nonholonomic robotic systems is studied using the continuation method and the optimization paradigms. A new Jacobian motion planning algorithm is derived, based on a solution of the Lagrange-type optimization problem addressed in the linear approximation of the system. Performance of the new algorithm is illustrated by numeric computations performed for the unicycle robot kinematics.

MSC:

70E60 Robot dynamics and control of rigid bodies
70F25 Nonholonomic systems related to the dynamics of a system of particles

Software:

ACADO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alouges, F., Chitour, Y., Long, R.: A motion-planning algorithm for the rolling-body problem. IEEE Trans. Robot. 26(5), 827-836 (2010) · doi:10.1109/TRO.2010.2053733
[2] Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. Springer, New York (2003) · Zbl 1026.15004
[3] Chelouah, A., Chitour, Y.: On the motion planning of rolling surfaces. Forum Math. 15, 727-758 (2003) · Zbl 1044.93015 · doi:10.1515/form.2003.039
[4] Chitour, Y.: A continuation method for motion-planning problems. ESAIM Control Opt. Calc. Var. 12(1), 139-168 (2006) · Zbl 1105.93030 · doi:10.1051/cocv:2005035
[5] Chitour, Y., Sussmann, H.J.: Motion planning using the continuation method. In: Baillieul, J., Sastry, S.S., Sussmann, H.J. (eds.) Essays on Mathematical Robotics, pp. 91-125. Springer, New York (1998) · Zbl 0946.70003
[6] Divelbiss, A., Seereeram, S., Wen, J.T.: Kinematic path planning for robots with holonomic and nonholonomic constraints. In: Baillieul, J., Sastry, S.S., Sussmann, H.J. (eds.) Essays on Mathematical Robotics, pp. 127-150. Springer, New York (1998) · Zbl 0936.70007
[7] Duleba, I., Sasiadek, J.Z.: Nonholonomic motion planning based on Newton algorithm with energy optimization. IEEE Trans. Control Syst. Technol. 11(3), 355-363 (2003) · doi:10.1109/TCST.2003.810394
[8] Houska, B., Ferreau, H.J., Diehl, M.: ACADO toolkit—an open-source framework for automatic control and dynamic optimization. Opt. Control Methods Appl. 32, 298-312 (2011) · Zbl 1218.49002 · doi:10.1002/oca.939
[9] Janiak, M., Tchoń, K.: Constrained motion planning of nonholonomic systems. Syst. Control Lett. 60(9), 625-631 (2011) · Zbl 1236.93081 · doi:10.1016/j.sysconle.2011.04.022
[10] Jung, S., Wen, J.T.: Nonlinear model predictive control for the swingup of a rotary inverted pendulum. Trans. ASME 126, 666-673 (2004) · doi:10.1115/1.1765115
[11] Ratajczak, A., Tchoń, K.: Multiple-task motion planning of non-holonomic systems with dynamics. Mech. Sci. 4, 153-166 (2013) · doi:10.5194/ms-4-153-2013
[12] Ratajczak, A., Tchoń, K.: Parametric and nonparametric jacobian motion planning for non-holonomic robotic systems. J. Intell. Robot. Syst. 9, 1965-1974 (2014) · Zbl 1370.78240
[13] Ratajczak, A., Karpińska, J., Tchoń, K.: Task-priority motion planning of underactuated systems: An endogenous configuration space approach. Robotica 28, 885-892 (2010) · doi:10.1017/S0263574709990737
[14] Sontag, E.D.: Mathematical Control Theory. Springer, New York (1990) · Zbl 0703.93001 · doi:10.1007/978-1-4684-0374-9
[15] Sontag, E.D.: A general approach to path planning for systems without drift. In: Baillieul, J., Sastry, S.S., Sussmann, H.J. (eds.) Essays on Mathematical Robotics, pp. 151-168. Springer, New York (1998) · Zbl 1041.93545
[16] Sussmann, H.J.: A continuation method for non-holonomic path finding problems. In: Proceedings of the 32nd IEEE CDC, pp. 2718-2723 (1993)
[17] Tchoń, K., Jakubiak, J.: Endogenous configuration space approach to mobile manipulators: a derivation and performance assessment of Jacobian inverse kinematics algorithms. Int. J. Control 76(9), 1387-1419 (2003) · Zbl 1048.93074
[18] Tchoń, K., Małek, Ł.: On dynamic properties of singularity robust Jacobian inverse kinematics. IEEE Trans. Autom. Control 54(6), 1402-1406 (2009) · Zbl 1367.93410 · doi:10.1109/TAC.2009.2017959
[19] Zadarnowska, K., Tchoń, K.: A control theory framework for performance evaluation of mobile manipulators. Robotica 25, 703-715 (2007) · doi:10.1017/S0263574707003803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.