×

Teko: a block preconditioning capability with concrete example applications in Navier-Stokes and MHD. (English) Zbl 06645426

Summary: This paper describes the design of Teko, an object-oriented C++ library for implementing advanced block preconditioners. Mathematical design criteria that elucidate the needs of block preconditioning libraries and techniques are explained and shown to motivate the structure of Teko. For instance, a principal design choice was for Teko to strongly reflect the mathematical statement of the preconditioners to reduce development burden and permit focus on the numerics. Additional mechanisms are explained that provide a pathway to developing an optimized production capable block preconditioning capability with Teko. Finally, Teko is demonstrated on fluid flow and magnetohydrodynamics applications. In addition to highlighting the features of the Teko library, these new results illustrate the effectiveness of recent preconditioning developments applied to advanced discretization approaches.

MSC:

65F08 Preconditioners for iterative methods
76W05 Magnetohydrodynamics and electrohydrodynamics
76D05 Navier-Stokes equations for incompressible viscous fluids
68N01 General topics in the theory of software

Software:

ML; Trilinos; BPKit; Eiffel; Playa; Teko
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Bartlett, {\it Thyra Linear Operators and Vectors Overview of Interfaces and Support Software for the Development and Interoperability of Abstract Numerical Algorithms}, Technical Report SAND2007-5984, Sandia National Laboratories, 2007.
[2] M. Benzi, M. Ng, Q. Niu, and Z. Wang, {\it A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations}, J. Comput. Phys., 230 (2011), pp. 6185-6202. · Zbl 1419.76433
[3] M. Benzi and M. A. Olshanskii, {\it An augmented Lagrangian-based approach to the Oseen problem}, SIAM J. Sci. Comput., 28 (2006), pp. 2095-2113. · Zbl 1126.76028
[4] M. Benzi and Z. Wang, {\it A parallel implementation of the modified augmented Lagrangian preconditioner for the incompressible Navier-Stokes equations}, Numer. Algorithms, 64 (2013), pp. 73-84. · Zbl 1426.76222
[5] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. Smith, {\it Composable linear solvers for multiphysics}, in Proceedings of the 2012 11th International Symposium on Parallel and Distributed Computing (ISPDC), IEEE, Washington, DC, 2012, pp. 55-62.
[6] L. Chacón, {\it An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional viscoresistive magnetohydrodynamics}, Phys. Plasmas, 15 (2008), 056103.
[7] L. Chacón, {\it Scalable parallel implicit solvers for 3D magnetohydrodynamics}, J. Phys. Conf. Ser., 125 (2008), 012041.
[8] L. Chacón and D. A. Knoll, {\it A 2D high-\(β\) Hall MHD implicit nonlinear solver}, J. Comput. Phys., 188 (2003), pp. 573-592. · Zbl 1127.76375
[9] L. Chacón, D. A. Knoll, and J. M. Finn, {\it An implicit, nonlinear reduced resistive MHD solver}, J. Comput. Phys., 178 (2002), pp. 15-36. · Zbl 1139.76328
[10] E. Chow and M. A. Heroux, {\it An object-oriented framework for block preconditioning}, ACM Trans. Math. Software, 24 (1998), pp. 159-183. · Zbl 0930.65052
[11] E. C. Cyr, J. N. Shadid, and R. S. Tuminaro, {\it Stabilization and scalable block preconditioning for the Navier-Stokes equations}, J. Comput. Phys., 231 (2012), pp. 345-363. · Zbl 1426.76241
[12] E. C. Cyr, J. N. Shadid, R. S. Tuminaro, R. P. Pawlowski, and L. Chacón, {\it A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD}, SIAM J. Sci. Comput., 35 (2013), pp. B701-B730. · Zbl 1273.76269
[13] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, {\it Block preconditioners based on approximate commutators}, SIAM J. Sci. Comput., 27 (2006), pp. 1651-1668. · Zbl 1100.65042
[14] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, {\it A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations}, J. Comput. Phys., 227 (2008), pp. 1790-1808. · Zbl 1290.76023
[15] H. Elman, D. Silvester, and A. Wathen, {\it Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics}, Oxford University Press, Oxford, 2005. · Zbl 1083.76001
[16] H. Elman and R. S. Tuminaro, {\it Boundary conditions in approximate commutator preconditioners for the Navier-Stokes equations}, Electron. Trans. Numer. Anal., 35 (2009), pp. 257-280. · Zbl 1391.76539
[17] H. Elman, V. E. Howle, J. N. Shadid, and R. S. Tuminaro, {\it A parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations}, J. Comput. Phys., 187 (2003), pp. 504-523. · Zbl 1061.76058
[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, {\it Design Patterns: Elements of Reusable Object-Oriented Software}, Addison-Wesley Professional, Reading, MA, 1995. · Zbl 0887.68013
[19] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala, {\it ML 5.0 Smoothed Aggregation User’s Guide}, Technical Report SAND2006-2649, Sandia National Laboratories, 2006.
[20] M. D. Gunzburger, {\it Finite Element Methods for Viscous Incompressible Flows}, Academic Press, Boston, 1989. · Zbl 0697.76031
[21] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, {\it An overview of the Trilinos project}, ACM Trans. Math. Software, 31 (2005), pp. 397-423. · Zbl 1136.65354
[22] V. E. Howle, R. C. Kirby, K. Long, B. Brennan, and K. Kennedy, {\it Playa: High-performance programmable linear algebra}, Scientific Programming, 20 (2012), pp. 257-273.
[23] P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu, E. Phipps, A. Prokopenko, S. Rajamanickam, C. Siefert, and S. Kennon, {\it Towards extreme-scale simulations for low Mach fluids with second-generation Trilinos}, Parallel Processing Lett., 24 (2014), 1442005.
[24] P. T. Lin, M. Sala, J. N. Shadid, and R. S. Tuminaro, {\it Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport}, Int. J. Numer. Meth. Eng., 67 (2006), pp. 208-225. · Zbl 1110.76315
[25] R. C. Martin, {\it The open-closed principle}, in More C++ Gems, Cambridge University Press New York, 1996, pp. 97-112.
[26] D. A. May and L. Moresi, {\it Preconditionered iterative methods for Stokes flow problems arising in compuational geodynamics}, Phys. Earth Planet. In., 171 (2008), pp. 33-47.
[27] B. Meyer, {\it Object-Oriented Software Construction}, Prentice-Hall International Series in Computer Science, Prentice-Hall, Upper Saddle River, NJ, 1988.
[28] M. F. Murphy, G. H. Golub, and A. J. Wathen, {\it A note on preconditioning for indefinite linear systems}, SIAM J. Sci. Comput., 21 (2000), pp. 1969-1972. · Zbl 0959.65063
[29] S. V. Patankar and D. B. Spalding, {\it A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows}, Int. J. Heat Mass Transfer, 15 (1972), pp. 1787-1806. · Zbl 0246.76080
[30] E. G. Phillips, E. C. Cyr, and J. N. Shadid, {\it An investigation of block preconditioners for unsteady Navier-Stokes}, in CSRI Summer Proceedings 2010, Computer Science Research Institute, Sandia National Laboratories, 2010, pp. 47-58.
[31] E. G. Phillips, H. C. Elman, E. C. Cyr, J. N. Shadid, and R. P. Pawlowski, {\it A block preconditioner for an exact penalty formulation for stationary MHD}, SIAM J. Sci. Comput., 36 (2014), pp. B930-B951. · Zbl 1308.76333
[32] M. Rajan, D. W. Doerfler, P. T. Lin, S. D. Hammond, R. F. Barrett, and C. T. Vaughan, {\it Unprecedented scalability and performance of the new NNSA Tri-Lab Linux Capacity Cluster 2}, in 2012 SC Companion: High Performance Computing, Networking, Storage and Analysis (SCC), 2012, pp. 417-425.
[33] J. N. Shadid, R. P. Pawlowski, J. W. Banks, L. Chacón, P. T. Lin, and R. S. Tuminaro, {\it Towards a scalable fully-implicit fully-coupled resistive mhd formulation with stabilized FE methods}, J. Comput. Phys., 229 (2010), pp. 7649-7671. · Zbl 1425.76312
[34] J. N. Shadid, R. P. Pawlowski, E. C. Cyr, R. S. Tuminaro, L. Chacon, and P. D. Weber, {\it Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton-Krylov-AMG}, Comput. Methods in Appl. Mech. Eng., 304 (2016), pp. 1-25. DOI: 10.1016/j.cma.2016.01.019 · Zbl 1423.76275
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.