×

A new Poisson-Nernst-Planck model with ion-water interactions for charge transport in ion channels. (English) Zbl 1352.92012

Summary: In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

MSC:

92C05 Biophysics
92C40 Biochemistry, molecular biology
35Q82 PDEs in connection with statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abaid N, Eisenberg BS, Liu WS (2008) Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system. SIAM J Appl Dyn Syst 7(4):1507-1526 · Zbl 1167.34361
[2] Allen T, Kuyucak S, Chung SH (1999) Molecular dynamics study of the KcsA potassium channel. Biophys J 77:2502-2516
[3] Antypov D, Barbosa MC, Holm C (2005) Incorporation of excluded-volume correlations into Poisson-Boltzmann theory. Phys Rev E 71(061):106
[4] Bazant MZ, Storey BD, Kornyshev AA (2011) Double layer in ionic liquids: overscreening versus crowding. Phys Rev Lett 106(046):102
[5] Ben-Yaakov D, Andelman D, Podgornik R, Podgornik R (2011) Ion-specific hydration effects: extending the Poisson-Boltzmann theory. Curr Opin Coll Interface Sci 16:542-550
[6] Brooks BR, Bruccoleri RE, Olafson BD, States D, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187-217
[7] Cardenas AE, Coalson RD, Kurnikova MG (2000) Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on Gramicidin A channel conductance. Biophys J 79:80-93
[8] Chandra A (2000) Static dielectric constant of aqueous electrolyte solutions: is there any dynamic contribution? J Chem Phys 113:903-905
[9] Chen D (2014) Modeling and computation of heterogeneous implicit solvent and its applications for biomolecules. Mol Based Math Biol 2:2299-3266 · Zbl 1347.92021
[10] Chen D, Wei GW (2012) Quantum dynamics in continuum for proton transport III: generalized correlation. J Chem Phys 136(134):109
[11] Chen D, Wei GW (2013) Quantum dynamics in continuum for proton transport I: basic formulation. Commun Comput Phys 13:285-324
[12] Chen D, Lear J, Eisenberg BS (1997) Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophys J 72(1):97-116
[13] Chen D, Chen Z, Chen C, Geng WH, Wei GW (2011) MIBPB: a software package for electrostatic analysis. J Comput Chem 32:756-770
[14] Chen D, Chen Z, Wei GW (2012) Quantum dynamics in continuum for proton transport II: variational solvent-solute intersurface. Int J Numer Methods Biomed Eng 28:25-51 · Zbl 1319.92064
[15] Cheng MH, Coalson RD (2005) An accurate and efficient empirical approach for calculating the dielectric self-energy and ion-ion pair potential in continuum models of biological ion channels. J Phys Chem B 109(1):488-498
[16] Cheng MH, Coalson RD, Tang P (2010) Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel. J Am Chem Soc 132(46):16442-16449
[17] Chung SH, Allen TW, Kuyucak S (2002) Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys J 82:628-645
[18] Coalson RD, Kurnikova MG (2005) Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans Nanobiosci 4(1):81-93
[19] Corry B, Kuyucak S, Chung SH (2003) Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels. Biophys J 84(6):3594-3606
[20] Dyrka W, Augousti AT, Kotulska M (2008) Ion flux through membrane channels: an enhanced algorithm for the Poisson-Nernst-Planck model. J. Comput Chem 29:1876-1888
[21] Eisenberg BS, Liu WS (2006) Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J Math Anal 38(6):1932-1966 · Zbl 1137.34022
[22] Eisenberg BS, Hyon YK, Liu C (2010) Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids. J Chem Phys 133(104):104
[23] Engels M, Gerwert K, Bashford D (1995) Computational studies on bacteriorhodopsin: conformation and proton transfer energetics. Biophys Chem 56:95
[24] Flavell A, Machen M, Eisenberg B, Kabre J, Liu C, Li X (2014) A conservative finite difference scheme for Poisson-Nernst-Planck equations. J Comput Electron 13:235-249
[25] Gillespie D, Nonner W, Eisenberg BS (2002) Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J Phys Condens Matter 14(46):12129-12145
[26] Gilson MK, Davis ME, Luty BA, McCammon JA (1993) Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation. J Phys Chem 97(14):3591-3600
[27] Gordon D, Krishnamurthy V, Chung S (2009) Generalized langevin models of molecular dynamics simulations with applications to ion channels. J Chem Phys 131:134102
[28] Harguindey S, Arranz J, Wahl M, Orives G, Reshkin S (2009) Proton transport inhibitors as potentially selective anticancer drugs. Anticancer Res 29:2127-2136
[29] Hille B (1992) Ionic channels of excitable membranes. Sinauer Associates, Sunderland
[30] Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-544
[31] Hollerbach U, Chen D, Eisenberg BS (2002) Two- and three-dimensional Poisson-Nernst-Planck simulations of current flow through Gramicidin A. J Sci Comput 16(4):373-409 · Zbl 0997.78004
[32] Holst M, Baker N, Wang F (2000) Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I. Algorithms and examples. J Comput Chem 21(15):1319-1342
[33] Hu L, Wei GW (2012) Nonlinear Poisson equation for heterogeneous media. Biophys J 103:758-766
[34] Hwang H, Schatz GC, Ratner MA (2006) Ion current calculations based on three dimensional Poisson-Nernst-Planck theory for a cyclic peptide nanotube. J Phys Chem B 110:6999-7008
[35] Hyon Y, Eisenberg BS, Liu C (2011) A mathematical model of the hard sphere repulsion in ionic solutions. Commun Math Sci 9:459-475 · Zbl 1406.76089
[36] Im W, Roux B (2002) Ion permeation and selectivity of ompf porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J Mol Biol 322:851-869
[37] Jo S, Vargyas M, Vasko-Szedlar J, Roux B, Im W (2008) Pbeq-solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res 36:W270-W275
[38] Jordan PC (2005) Fifty years of progress in ion channel research. IEEE Trans Nanobiosci 4:3-9
[39] Jung YW, Lu BZ, Mascagni M (2009) A computational study of ion conductance in the KcsA K+ channel using a Nernst-Planck model with explicit resident ions. J Chem Phys 131:215101
[40] Klapper I, Hagstrom R, Fine R, Sharp K, Honig B (1986) Focussing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino acid modification. Protein 1:47-59
[41] Krishnamurthy V, Chung SH (2007) Large-scale dynamical models and estimation for permeation in biological membrane ion channels. Proc IEEE 95:853-880
[42] Kurnikova MG, Coalson RD, Graf P, Nitzan A (1999) A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the Gramicidin A channel. Biophys J 76:642-656
[43] Kuyucak S, Andersen OS, Chung SH (2001) Models of permeation in ion channels. Rep Prog Phys 64:1427-1472
[44] Li H, Lu B (2014) An ionic concentration and size dependent dielectric permittivity Poisson-Boltzmann model for biomolecular solvation studies. J Chem Phys 141(024):115
[45] Li B, Lu BZ, Wang ZM, McCammon JA (2010) Solutions to a reduced Poisson-Nernst-Planck system and determination of reaction rates. Phys A 389(7):1329-1345
[46] Li B, Wen J, Zhou S (2016) Mean-field theory and computation of electrostatics with ionic concentration dependent dielectrics. Commun Math Sci 14:249-271 · Zbl 1334.35335
[47] Lin TC, Eisenberg B (2014) A new approach to the Lennard-Jones potential and a new model: PNP-steric equations. Commun Math Sci 12:149-173 · Zbl 1293.35034
[48] Liu WS (2005) Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J Appl Math 65(3):754-766 · Zbl 1079.34044
[49] Liu JL, Eisenberg B (2014) Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels. J Chem Phys 141:22D532
[50] Lu BZ, Chen WZ, Wang CX, Xu XJ (2002) Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation. Proteins 48(3):497-504
[51] Lu BZ, Holst MJ, McCammon JA, Zhou YC (2010) Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions. J Comput Phys 229(19):6979-6994 · Zbl 1195.92004
[52] Luo R, David L, Gilson MK (2002) Accelerated Poisson-Boltzmann calculations for static and dynamic systems. J Comput Chem 23(13):1244-1253
[53] Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A, Antosiewicz J, Gilson MK, Bagheri B, Scott LR, McCammon JA (1995) Electrostatics and diffusion of molecules in solution—simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 91(1-3):57-95
[54] Mathur SR, Murthy JY (2009) A multigrid method for the Poisson-Nernst-Planck equations. SIAM J Appl Math 52(17-18):4031-4039 · Zbl 1167.76343
[55] Molenaar R (2011) Ion channels in glioblastoma. ISRN Neurol 2011:590249 · Zbl 1222.82073
[56] Prabhu NV, Panda M, Yang QY, Sharp KA (2008) Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules. J Comput Chem 29:1113-1130
[57] Roux B (2002) Computational studies of the gramicidin channel. Acc Chem Res 35:366-375
[58] Roux B, Allen T, Berneche S, Im W (2004) Theoretical and computational models of biological ion channels. Q Rev Biophys 37(1):15-103
[59] Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591-596
[60] Schumaker MF, Pomes R, Roux B (2000) A combined molecular dynamics and diffusion model of single proton conduction through gramicidin. Biophys J 79:2840-2857
[61] Sharp KA, Honig B (1990) Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equatlon. J Phys Chem 94:7684-7692
[62] Shrivastava IH, Sansom MS (2000) Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayter. Biophys J 78:557-570
[63] Singer A, Gillespie D, Norbury J, Eisenberg RS (2008) Singular perturbation analysis of the steady state Poisson-Nernst-Planck system: applications to ion channels. Eur J Appl Math 19:541-560 · Zbl 1145.92010
[64] Vlachy V (1999) Ionic effects beyond Poisson-Boltzmann theory. Annu Rev Phys Chem 50:145-165
[65] Wei GW (2010) Differential geometry based multiscale models. Bull Math Biol 72:1562-1622 · Zbl 1198.92001
[66] Wei GW, Zheng Q, Chen Z, Xia K (2012) Differential geometry based ion transport models. SIAM Rev 54(4):699-754 · Zbl 1306.92021
[67] Xie D, Zhou SZ (2007) A new minimization protocol for solving nonlinear Poisson-Boltzmann mortar finite element equation. Bit Numer Math 47:853-871 · Zbl 1147.65096
[68] Xie D, Jiang Y, Scott L (2013) Efficient algorithms for solving a nonlocal dielectric model for protein in ionic solvent. SIAM J Sci Comput 38:B1267-B1284 · Zbl 1287.35092
[69] Zheng Q, Wei GW (2011) Poisson-Boltzmann-Nernst-Planck model. J Chem Phys 134(194):101
[70] Zheng Q, Chen D, Wei GW (2011) Second-order Poisson-Nernst-Planck solver for ion transport. J Comput Phys 230:5239-5262 · Zbl 1222.82073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.