×

A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh. (English) Zbl 1349.78090

Summary: For embedded boundary electromagnetics using the Dey-Mittra algorithm [S. Dey and R. Mitra, “A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects”, IEEE Microwave Guided Wave Lett. 7, No. 9, 273–275 (1997; doi:10.1109/75.622536)], a special grad-div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell’s curl-curl matrix. Efficient curl-curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at https://github.com/bauerca/maxwell) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey-Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work [C. Nieter et al., J. Comput. Phys. 228, No. 21, 7902–7916 (2009; Zbl 1184.78080)], neglecting some boundary-cut cell faces (as is required in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i. e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.

MSC:

78M20 Finite difference methods applied to problems in optics and electromagnetic theory

Citations:

Zbl 1184.78080
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Dey, S.; Mittra, R., A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects, IEEE Microwave and Guided Wave Letters, 7, 9, 273-275 (1997), (see also IEEE Microwave and Wireless Components Letters)
[2] Nieter, C.; Cary, J. R.; Werner, G. R.; Smithe, D. N.; Stoltz, P. H., Application of Dey-Mittra conformal boundary algorithm to 3D electromagnetic modeling, Journal of Computational Physics, 228, 7902-7916 (2009) · Zbl 1184.78080
[3] Yee, K., Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 3, 302-307 (1966) · Zbl 1155.78304
[4] Hiptmair, R., Multigrid method for Maxwell’s equations, SIAM Journal on Numerical Analysis, 36, 1, 204-225 (1998) · Zbl 0922.65081
[5] Bochev, P.; Garasi, C.; Hu, J.; Robinson, A.; Tuminaro, R., An improved algebraic multigrid method for solving Maxwell’s equations, SIAM Journal on Scientific Computing, 25, 2, 623-642 (2004) · Zbl 1163.76337
[6] Clemens, M.; Feigh, S.; Weiland, T., Construction principles of multigrid smoothers for curl-curl equations, IEEE Transactions on Magnetics, 41, 5, 1680-1683 (2005)
[7] Arbenz, P.; Geus, R., Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems, Applied Numerical Mathematics, 54, 2, 107-121 (2005) · Zbl 1127.65021
[8] Hu, J.; Tuminaro, R.; Bochev, P.; Garasi, C.; Robinson, A., Toward an h-independent algebraic multigrid method for maxwell’s equations, SIAM Journal on Scientific Computing, 27, 5, 1669-1688 (2006) · Zbl 1136.76341
[9] Kolev, T.; Vassilevski, P., Parallel auxiliary space amg for h (curl) problems, Journal of Computational Mathematics, 27, 5, 604-623 (2009) · Zbl 1212.65128
[10] Briggs, W.; McCormick, S., A Multigrid Tutorial, vol. 72 (2000), Society for Industrial and Applied Mathematics · Zbl 0958.65128
[11] Taflove, A.; Hagness, S., Computational Electrodynamics (1995), Artech House: Artech House Boston · Zbl 0840.65126
[12] Werner, G. R.; Cary, J. R., A stable FDTD algorithm for non-diagonal, anisotropic dielectrics, Journal of Computational Physics, 226, 1, 1085-1101 (2007) · Zbl 1139.78008
[13] Weiland, T., A discretization model for the solution of Maxwell’s equations for six-component fields, Archiv fuer Elektronik und Uebertragungstechnik, 31, 116-120 (1977)
[14] Clemens, M.; Weiland, T., Discrete electromagnetism with the finite integration technique, Progress in Electromagnetics Research, PIER, 32, 65-87 (2001)
[15] Zagorodnov, I.; Schuhmann, R.; Weiland, T., A uniformly stable conformal FDTD-method in cartesian grids, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 16, 2, 127-141 (2003) · Zbl 1014.78014
[16] Zagorodnov, I.; Schuhmann, R.; Weiland, T., Conformal FDTD-methods to avoid time step reduction with and without cell enlargement, Journal of Computational Physics, 225, 2, 1493-1507 (2007) · Zbl 1135.78015
[17] Tornberg, A.; Engquist, B., Consistent boundary conditions for the Yee scheme, Journal of Computational Physics, 227, 14, 6922-6943 (2008) · Zbl 1154.65354
[18] Engquist, B.; Häggblad, J.; Runborg, O., On energy preserving consistent boundary conditions for the Yee scheme in 2d, BIT Numerical Mathematics, 1-23 (2011) · Zbl 1257.78021
[19] Stewart, G., Matrix Algorithms: Eigensystems, vol. 2 (2001), Society for Industrial and Applied Mathematics · Zbl 0984.65031
[20] van der Vorst, H., Computational methods for large eigenvalue problems, (Handbook of Numerical Analysis, vol. 8 (2002)), 3-179 · Zbl 1028.65028
[21] Grimes, R.; Lewis, J.; Simon, H., A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems, SIAM Journal on Matrix Analysis and Applications, 15, 1-45 (1991)
[22] Vaněk, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 3, 179-196 (1996) · Zbl 0851.65087
[23] Bochev, P.; Hu, J.; Siefert, C.; Tuminaro, R., An algebraic multigrid approach based on a compatible gauge reformulation of Maxwell’s equations, SIAM Journal on Scientific Computing, 31, 557 (2008) · Zbl 1184.78007
[24] Bochev, P.; Hyman, J., Principles of mimetic discretizations of differential operators, Compatible Spatial Discretizations, 89-119 (2006) · Zbl 1110.65103
[25] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the Trilinos project, ACM Transactions on Mathematical Software, 31, 3, 397-423 (2005) · Zbl 1136.65354
[26] Stewart, G., A Krylov-Schur algorithm for large eigenproblems, SIAM Journal on Matrix Analysis and Applications, 23, 3, 601-614 (2002) · Zbl 1003.65045
[27] Baker, C. G.; Hetmaniuk, U. L.; Lehoucq, R. B.; Thornquist, H. K., Anasazi software for the numerical solution of large-scale eigenvalue problems, ACM Transactions on Mathematical Software, 36, 3, 13:1-13:23 (2009) · Zbl 1364.65083
[28] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7, 3, 856-869 (1986) · Zbl 0599.65018
[30] Adams, M.; Brezina, M.; Hu, J.; Tuminaro, R., Parallel multigrid smoothing: polynomial versus Gauss-Seidel, Journal of Computational Physics, 188, 2, 593-610 (2003) · Zbl 1022.65030
[31] Jackson, J. D., Classical Electrodynamics (1999), John Wiley and Sons, Inc. · Zbl 0920.00012
[32] Aune, B.; Bandelmann, R.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D. A.; Edwards, H. T.; Ferrario, M.; Fouaidy, M.; Gall, P.-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W.-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H.-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K., Superconducting tesla cavities, Physical Review Special Topics - Accelerators and Beams, 3, 092001 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.