×

Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations. (English) Zbl 1349.65305

Summary: Implicit integration factor (IIF) methods are originally a class of efficient “exactly linear part” time discretization methods for solving time-dependent partial differential equations (PDEs) with linear high order terms and stiff lower order nonlinear terms. For complex systems (e. g. advection-diffusion-reaction (ADR) systems), the highest order derivative term can be nonlinear, and nonlinear nonstiff terms and nonlinear stiff terms are often mixed together. High order weighted essentially non-oscillatory (WENO) methods are often used to discretize the hyperbolic part in ADR systems. There are two open problems on IIF methods for solving ADR systems: (1) how to obtain higher than the second order global time discretization accuracy; (2) how to design IIF methods for solving fully nonlinear PDEs, i. e., the highest order terms are nonlinear. In this paper, we solve these two problems by developing new Krylov IIF-WENO methods to deal with both semilinear and fully nonlinear advection-diffusion-reaction equations. The methods can be designed for arbitrary order of accuracy. The stiffness of the system is resolved well and the methods are stable by using time step sizes which are just determined by the nonstiff hyperbolic part of the system. Large time step size computations are obtained. We analyze the stability and truncation errors of the schemes. Numerical examples of both scalar equations and systems in two and three spatial dimensions are shown to demonstrate the accuracy, efficiency and robustness of the methods.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations

Software:

RKC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alber, M.; Chen, N.; Lushnikov, P.; Newman, S., Continuous macroscopic limit of a discrete stochastic model for interaction of living cells, Phys. Rev. Lett., 99, 168102 (2007)
[2] Ascher, U.; Ruuth, S.; Wetton, B., Implicit-explicit methods for time-dependent PDEʼs, SIAM J. Numer. Anal., 32, 797-823 (1995) · Zbl 0841.65081
[3] Beylkin, G.; Keiser, J. M.; Vozovoi, L., A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys., 147, 362-387 (1998) · Zbl 0924.65089
[4] Bourlioux, A.; Layton, A. T.; Minion, M. L., High-order multi-implicit spectral deferred correction methods for problems of reactive flow, J. Comput. Phys., 189, 651-675 (2003) · Zbl 1061.76053
[5] Bowers, R. L.; Wilson, J. R., Numerical Modeling in Applied Physics and Astrophysics (1991), Jones and Bartlett Publishers · Zbl 0786.76001
[6] Carmeliet, P., Mechanisms of angiogenesis and arteriogenesis, Nature Medicine, 6, 389-395 (2000)
[7] Chen, S.; Zhang, Y.-T., Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods, J. Comput. Phys., 230, 4336-4352 (2011) · Zbl 1416.65341
[8] Chou, C.-S.; Zhang, Y.-T.; Zhao, R.; Nie, Q., Numerical methods for stiff reaction-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 7, 515-525 (2007) · Zbl 1125.65080
[9] Christlieb, A.; Ong, B.; Qiu, J.-M., Integral deferred correction methods constructed with high order Runge-Kutta integrators, Math. Comput., 79, 761-783 (2010) · Zbl 1209.65073
[10] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-455 (2002) · Zbl 1005.65069
[11] Dutt, A.; Greengard, L.; Rokhlin, V., Spectral deferred correction methods for ordinary differential equations, BIT, 40, 2, 241-266 (2000) · Zbl 0959.65084
[12] Gallopoulos, E.; Saad, Y., Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput., 13, 5, 1236-1264 (1992) · Zbl 0757.65101
[13] Goodwin, B. C.; Trainor, L. E.H., Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields, J. Theor. Biol., 117, 79-106 (1985)
[14] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73-85 (1998) · Zbl 0897.65058
[15] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability preserving high order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098
[16] Herrero, M. A.; Velazquez, J. J.L., Singularity patterns in a chemotaxis model, Math. Ann., 306, 583-623 (1996) · Zbl 0864.35008
[17] Brenner, M. P.; Constantin, P.; Kadanoff, L. P.; Shenkel, A.; Venkataramani, S. C., Diffusion, attraction and collapse, Nonlinearity, 12, 1071-1098 (1999) · Zbl 0942.35018
[18] Huang, J.; Jia, J.; Minion, M., Arbitrary order Krylov deferred correction methods for differential algebraic equations, J. Comput. Phys., 221, 2, 739-760 (2007) · Zbl 1110.65076
[19] Hundsdorfer, W.; Verwer, J., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (2003), Springer-Verlag · Zbl 1030.65100
[20] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[21] Kanevsky, A.; Carpenter, M. H.; Gottlieb, D.; Hesthaven, J. S., Application of implicit-explicit high order Runge-Kutta methods to Discontinuous-Galerkin schemes, J. Comput. Phys., 225, 2, 1753-1781 (2007) · Zbl 1123.65097
[22] Kassam, A.-K.; Trefethen, L. N., Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comput., 26, 4, 1214-1233 (2005) · Zbl 1077.65105
[23] Keller, E. F.; Segel, L. A., Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30, 235-248 (1971) · Zbl 1170.92308
[24] Kennedy, C. A.; Carpenter, M. H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 139-181 (2003) · Zbl 1013.65103
[25] Layton, A. T.; Minion, M. L., Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics, J. Comput. Phys., 194, 2, 697-715 (2004) · Zbl 1100.76048
[26] Liu, X. F.; Nie, Q., Compact integration factor methods for complex domains and adaptive mesh refinement, J. Comput. Phys., 229, 16, 5692-5706 (2010) · Zbl 1194.65111
[27] Lushnikov, P.; Chen, N.; Alber, M. S., Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact, Phys. Rev. E, 78, 061904 (2008)
[28] Maday, Y.; Patera, A. T.; Ronquist, E. M., An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow, J. Sci. Comput., 5, 263-292 (1990) · Zbl 0724.76070
[29] Mihalas, D.; Mihalas, B. W., Foundation of Radiation Hydrodynamics (1984), Oxford University press · Zbl 0651.76005
[30] Minion, M. L., Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Math. Sci., 1, 3, 471-500 (2003) · Zbl 1088.65556
[31] Moler, C.; Van Loan, C., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45, 3-49 (2003) · Zbl 1030.65029
[32] Mousseau, V. A.; Knoll, D. A.; Rider, W. J., Physical-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion, J. Comput. Phys., 160, 743-765 (2000) · Zbl 0949.65092
[33] Nie, Q.; Zhang, Y.-T.; Zhao, R., Efficient semi-implicit schemes for stiff systems, J. Comput. Phys., 214, 521-537 (2006) · Zbl 1089.65094
[34] Nie, Q.; Wan, F.; Zhang, Y.-T.; Liu, X.-F., Compact integration factor methods in high spatial dimensions, J. Comput. Phys., 227, 5238-5255 (2008) · Zbl 1142.65072
[35] Rider, J.; Knoll, A.; Olson, L., A multigrid Newton-Krylov method for multimaterial equilibrium radiation diffusion, J. Comput. Phys., 152, 164-191 (1999) · Zbl 0944.85002
[36] Ropp, D. L.; Shadid, J. N., Stability of operator splitting methods for systems with indefinite operators: Advection-diffusion-reaction systems, J. Comput. Phys., 228, 3508-3516 (2009) · Zbl 1168.65380
[37] Schnakenberg, J., Simple chemical reaction systems with limit cycle behavior, J. Theor. Biol., 81, 389-400 (1979)
[38] Shu, C.-W., TVD time discretizations, SIAM J. Sci. Stat. Comput., 9, 1073-1084 (1988) · Zbl 0662.65081
[39] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[40] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Cockburn, B.; Johnson, C.; Shu, C.-W.; Tadmor, E.; Quarteroni, A., Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lect. Notes Math., vol. 1697 (1998), Springer) · Zbl 0927.65111
[41] Sportisse, B., An analysis of operator splitting techniques in the stiff case, J. Comput. Phys., 161, 140-168 (2000) · Zbl 0953.65062
[42] Trefethen, L. N.; Bau, D., Numerical Linear Algebra (1997), SIAM · Zbl 0874.65013
[43] Verwer, J. G.; Sommeijer, B. P.; Hundsdorfer, W., RKC time-stepping for advection-diffusion-reaction problems, J. Comput. Phys., 201, 61-79 (2004) · Zbl 1059.65085
[44] Zhao, S.; Ovadia, J.; Liu, X.; Zhang, Y.-T.; Nie, Q., Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems, J. Comput. Phys., 230, 5996-6009 (2011) · Zbl 1220.65120
[45] Zhong, X., Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows, J. Comput. Phys., 128, 19-31 (1996) · Zbl 0861.76057
[46] Zhu, J.; Zhang, Y.-T.; Newman, S. A.; Alber, M., Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology, J. Sci. Comput., 40, 391-418 (2009) · Zbl 1203.65194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.