×

Multidimensional HLLC Riemann solver for unstructured meshes – with application to Euler and MHD flows. (English) Zbl 1349.76426

Summary: The goal of this paper is to formulate genuinely multidimensional HLL and HLLC Riemann solvers for unstructured meshes by extending our prior papers on the same topic for logically rectangular meshes [the first author, ibid. 229, No. 6, 1970–1993 (2010; Zbl 1303.76140); ibid. 231, No. 22, 7476–7503 (2012; Zbl 1284.76261)]. Such Riemann solvers operate at each vertex of a mesh and accept as an input the set of states that come together at that vertex. The mesh geometry around that vertex is also one of the inputs of the Riemann solver. The outputs are the resolved state and multidimensionally upwinded fluxes in both directions. A formulation which respects the detailed geometry of the unstructured mesh is presented. Closed-form expressions are provided for all the integrals, making it particularly easy to implement the present multidimensional Riemann solvers in existing numerical codes. While it is visually demonstrated for three states coming together at a vertex, our formulation is general enough to treat multiple states (or zones with arbitrary geometry) coming together at a vertex. The present formulation is very useful for two-dimensional and three-dimensional unstructured mesh calculations of conservation laws. It has been demonstrated to work with second to fourth order finite volume schemes on two-dimensional unstructured meshes. On general triangular grids an arbitrary number of states might come together at a vertex of the primal mesh, while for calculations on the dual mesh usually three states come together at a grid vertex. We apply the multidimensional Riemann solvers to hydrodynamics and magnetohydrodynamics (MHD) on unstructured meshes. The Riemann solver is shown to operate well for traditional second order accurate total variation diminishing (TVD) schemes as well as for weighted essentially non-oscillatory (WENO) schemes with ADER (Arbitrary DERivatives in space and time) time-stepping. Several stringent applications for compressible gasdynamics and magnetohydrodynamics are presented, showing that the method performs very well and reaches high order of accuracy in both space and time. The present multidimensional Riemann solver is cost-competitive with traditional, one-dimensional Riemann solvers. It offers the twin advantages of isotropic propagation of flow features and a larger CFL number. Please see http://www.nd.edu/~dbalsara/Numerical-PDE-Course for a video introduction to multidimensional Riemann solvers.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

RIEMANN; HLLE
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abgrall, R., Approximation du problème de Riemann vraiment multidimensionnel des équations dʼEuler par une méthode de type Roe, I : La linéarisation, C. R. Acad. Sci., Sér. 1, 319, 499 (1994) · Zbl 0813.76074
[2] Abgrall, R., Approximation du problème de Riemann vraiment multidimensionnel des équations dʼEuler par une méthode de type Roe, II : Solution du problème de Riemann approché, C. R. Acad. Sci., Sér. 1, 319, 625 (1994) · Zbl 0813.76075
[3] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation, J. Comput. Phys., 114, 45-58 (1994) · Zbl 0822.65062
[4] Balsara, D. S., Multidimensional HLLE Riemann solver; application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993 (2010) · Zbl 1303.76140
[5] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231, 7476-7503 (2012) · Zbl 1284.76261
[6] Balsara, D. S., Linearized formulation of the Riemann problem for adiabatic and isothermal magnetohydrodynamics, Astrophys. J. Suppl. Ser., 116, 119 (1998)
[7] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292 (1999) · Zbl 0936.76051
[8] Balsara, D. S.; Shu, C.-W., Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452 (2000) · Zbl 0961.65078
[9] Balsara, D. S., Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys., 174, 614-648 (2001) · Zbl 1157.76369
[10] Balsara, D. S., Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151, 149-184 (2004)
[11] Balsara, D. S., Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys., 228, 5040-5056 (2009) · Zbl 1280.76030
[12] Balsara, D. S.; Rumpf, T.; Dumbser, M.; Munz, C.-D., Efficient, high-accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228, 2480 (2009) · Zbl 1275.76169
[13] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504-7517 (2012)
[14] Balsara, D. S.; Dumbser, M.; Meyer, C.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamic flow on structured meshes - Comparison with Runge-Kutta methods, J. Comput. Phys., 235, 934-969 (2013) · Zbl 1291.76237
[15] Batten, P.; Clarke, N.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553-1570 (1997) · Zbl 0992.65088
[16] Billett, S. J.; Toro, E. F., On WAF-type schemes for multidimensional hyperbolic conservation laws, J. Comput. Phys., 130, 1-24 (1997) · Zbl 0873.65088
[17] Brio, M.; Zakharian, A. R.; Webb, G. M., Two-dimensional Riemann solver for Euler equations of gas dynamics, J. Comput. Phys., 167, 177-195 (2001) · Zbl 1043.76042
[18] Cargo, P.; Gallice, G., Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws, J. Comput. Phys., 136, 446 (1997) · Zbl 0919.76053
[19] Chakraborty, A.; Toro, E. F., Development of an approximate Riemann solver for the steady supersonic Euler equations, Aeronaut. J., 98, 325-339 (1994)
[20] Chorin, A. J., Random choice solutions of hyperbolic systems, J. Comput. Phys., 22, 517 (1976) · Zbl 0354.65047
[21] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[22] Colella, P., A direct Eulerian MUSCL scheme for gas dynamics, SIAM J. Sci. Stat. Comput., 6, 104 (1985) · Zbl 0562.76072
[23] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., 87, 171 (1990) · Zbl 0694.65041
[24] Colella, P.; Woodward, P. R., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174-201 (1984) · Zbl 0531.76082
[25] Dedner, A.; Kemm, F.; Kröener, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for MHD equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[26] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723 (2007) · Zbl 1110.65077
[27] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[28] Dumbser, M.; Toro, E. F., A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88 (2011) · Zbl 1220.65110
[29] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 3, 294-318 (1988) · Zbl 0642.76088
[30] Einfeldt, B.; Munz, C.-D.; Roe, P. L.; Sjogreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 273-295 (1991) · Zbl 0709.76102
[31] Fey, M., Multidimensional upwinding 1. The method of transport for solving the Euler equations, J. Comput. Phys., 143, 159 (1998) · Zbl 0932.76050
[32] Fey, M., Multidimensional upwinding 2. Decomposition of the Euler equation into advection equation, J. Comput. Phys., 143, 181 (1998) · Zbl 0932.76051
[33] Gilquin, H.; Laurens, J.; Rosier, C., Multidimensional Riemann problems for linear hyperbolic systems, Notes Numer. Fluid Mech., 43, 284 (1993) · Zbl 0921.35090
[34] Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Math. USSR Sb., 47, 271-306 (1959) · Zbl 0171.46204
[35] Godunov, S. K., Numerical Solution of Multi-dimensional Problems in Gas Dynamics (1976), Nauka Press: Nauka Press Moscow
[36] Gurski, K. F., An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics, SIAM J. Sci. Comput., 25, 2165 (2004) · Zbl 1133.76358
[37] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 289-315 (1983) · Zbl 0565.65051
[38] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[39] LeVeque, R. J., Wave propagation algorithms for multidimensional hyperbolic systems, J. Comput. Phys., 131, 327 (1997) · Zbl 0872.76075
[40] Li, S.-T., An HLLC Riemann solver for magnetohydrodynamics, J. Comput. Phys., 203, 344 (2005) · Zbl 1299.76302
[41] Lukacsova-Medvidova, M.; Morton, K. W.; Warnecke, G., Finite volume evolution Galerkin methods for Euler equations of gas dynamics, Int. J. Numer. Methods Fluids, 40, 425 (2002) · Zbl 1023.76026
[42] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 4, 1781-1824 (2007) · Zbl 1251.76028
[43] Miyoshi, T.; Kusano, K., A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys., 208, 315-344 (2005) · Zbl 1114.76378
[44] Orszag, S. A.; Tang, C. M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129 (1979)
[45] Osher, S.; Solomon, F., Upwind difference schemes for hyperbolic systems of conservation laws, Math. Comput., 38, 158, 339 (1982) · Zbl 0483.65055
[46] Roe, P. L., Approximate Riemann solver, parameter vectors and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[47] Roe, P. L., Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics, J. Comput. Phys., 63, 458 (1986) · Zbl 0587.76126
[48] Roe, P. L.; Balsara, D. S., Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math., 56, 57 (1996) · Zbl 0845.35092
[49] Rumsey, C. B.; van Leer, B.; Roe, P. L., A multidimensional flux function with application to the Euler and Navier-Stokes equations, J. Comput. Phys., 105, 306 (1993) · Zbl 0767.76039
[50] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267 (1961)
[51] Saltzman, J., An unsplit 3D upwind method for hyperbolic conservation laws, J. Comput. Phys., 115, 153 (1994) · Zbl 0813.65111
[52] Schulz-Rinne, C. W.; Collins, J. P.; Glaz, H. M., Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14, 7, 1394-1414 (1993) · Zbl 0785.76050
[53] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618 (2002) · Zbl 1024.76028
[54] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736 (2005) · Zbl 1060.65641
[55] Toro, E. F.; Titarev, V. A., Solution of the generalized Riemann problem for advection reaction equations, Proc. R. Soc. Lond. Ser. A, 458, 271-281 (2002) · Zbl 1019.35061
[56] Toro, E. F.; Spruce, M.; Speares, W., Restoration of contact surface in the HLL Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[57] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the Harten-Lax-van Leer Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[58] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL Riemann solver (June 1992), Department of Aerospace Science, College of Aeronautics, Cranfield Institute of Technology: Department of Aerospace Science, College of Aeronautics, Cranfield Institute of Technology UK, Technical report CoA 9204
[59] van Leer, B., Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunovʼs method, J. Comput. Phys., 32, 101 (1979) · Zbl 1364.65223
[60] Wendroff, B., A two-dimensional HLLE Riemann solver and associated Godunov-type difference scheme for gas dynamics, Comput. Math. Appl., 38, 175-185 (1999) · Zbl 0984.76064
[61] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173 (1984) · Zbl 0573.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.