×

A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics. (English) Zbl 1349.86041

Summary: A numerical framework is developed for consistent integrations of the soundproof and fully compressible nonhydrostatic equations of motion for all-scale atmospheric flows; i. e., low Mach number, high Reynolds number, rotating stratified flows under gravity. The reduced anelastic and pseudo-incompressible soundproof equations and the fully compressible Euler equations are combined into a common form of conservation laws for mass, momentum and entropy that facilitates the design of a sole principal algorithm for its integration, with minimal alterations for accommodating each special case. The development extends a proven numerical framework for integrating the soundproof equations. It relies on non-oscillatory forward-in-time transport methods, applied consistently to all dependent variables of the system at hand, and with buoyant and rotational modes of motion treated implicitly in the integration. When the fully compressible equations are solved, the framework admits congruent schemes with explicit or implicit representation of acoustic modes, so the former can provide a reference for the latter. The consistency of the framework minimises the numerical differences between the soundproof and compressible integrators, thus admitting conclusive comparisons between compressible and soundproof solutions, unobscured by algorithmic disparities. For the large-time-step implicit schemes, technical differences between the soundproof and compressible integrators reduce to the selection of either a prescribed or a numerically prognosed density, and extension of the generalised Poisson solver to a bespoke Helmholtz solver. The numerical advancements and merits of the approach are illustrated with canonical simulations of planetary baroclinic instability, an archetype of global weather, and the breaking of a deep stratospheric gravity waves, an example of nonhydrostatic mesoscale dynamics.

MSC:

86A10 Meteorology and atmospheric physics
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

NICAM; EULAG; MPDATA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abiodun, B. J.; Prusa, J. M.; Gutowski, W. J., Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part I: comparison of dynamics cores in aqua-planet simulations, Clim. Dyn., 31, 795-810 (2008)
[2] Abiodun, B. J.; Gutowski, W. J.; Prusa, J. M., Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part II: dynamical influences on ITCZ behavior and tropical precipitation, Clim. Dyn., 31, 811-822 (2008)
[3] Achatz, U.; Klein, R.; Senf, F., Gravity waves, scale asymptotics and the pseudo-incompressible equations, J. Fluid Mech., 663, 120-174 (2010) · Zbl 1205.76071
[4] Arakawa, A.; Konor, C., Unification of the anelastic and quasi-hydrostatic systems of equations, Mon. Weather Rev., 137, 710-726 (2009)
[5] Baldauf, M.; Seifert, A.; Förstner, J.; Majewski, D.; Raschendorfer, M., Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887-3905 (2011)
[6] Bénard, P., Stability of semi-implicit and iterative centered-implicit time discretisation for various equation systems used in NWP, Mon. Weather Rev., 131, 2479-2491 (2003)
[7] Bénard, P.; Vivoda, J.; Mašek, J.; Smoliková, P.; Yessad, K.; Smith, Ch.; Brožkovaá, R.; Geleyn, J. F., Dynamical kernel of the ALADIN-NH spectral limited-area model: Revised formulation and sensitivity experiments, Q. J. R. Meteorol. Soc., 136, 155-169 (2010)
[8] Benacchio, T.; O’Neill, W. P.; Klein, R., A blended sound-proof-to-compressible numerical model for atmospheric dynamics, Mon. Weather Rev. (2013), submitted for publication
[9] Bijl, H.; Wesseling, P., A unified method for computing incompressible and compressible flows in boundary-fitted coordinates, J. Comput. Phys., 141, 153-173 (1998) · Zbl 0918.76054
[10] Blossey, P. N.; Durran, D. R., Selective monotonicity preservation in scalar advection, J. Comput. Phys., 227, 5160-5183 (2008) · Zbl 1142.65069
[11] Clark, T. L., Small-scale dynamic-model using a terrain-following coordinate transformation, J. Comput. Phys., 24, 186-215 (1977) · Zbl 0369.76025
[12] Clark, T. L.; Farley, R. D., Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: a possible mechanism for gustiness, J. Atmos. Sci., 41, 329-350 (1984)
[13] Colella, P.; Pao, K., A projection method for low speed flows, J. Comput. Phys., 149, 245-269 (1999) · Zbl 0935.76056
[14] Cullen, M. J.P., A test of a semi-implicit integration technique for a fully compressible non-hydrostatic model, Q. J. R. Meteorol. Soc., 116, 1253-1258 (1990)
[15] Giraldo, F. X.; Kelly, J. F.; Constantinescu, E. M., Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA), SIAM J. Sci. Comput., 35, B1162-B1194 (2013) · Zbl 1280.86008
[16] Cotter, C. J.; Holm, D. D., Variational formulations of sound-proof models, Q. J. R. Meteorol. Soc. (2013), in press · Zbl 1371.86019
[17] Davies, T.; Staniforth, A.; Wood, N.; Thuburn, J., Validity of anelastic and other equation sets as inferred from normal-mode analysis, Q. J. R. Meteorol. Soc., 129, 2761-2775 (2003)
[18] Davies, T.; Cullen, M. J.P.; Malcolm, A. J.; Mawson, M. H.; Staniforth, A.; White, A. A.; Wood, N., A new dynamical core for the Met Office’s global and regional modelling of the atmosphere, Q. J. R. Meteorol. Soc., 131, 1759-1782 (2005)
[19] Durran, D. R., Improving the anelastic approximation, J. Atmos. Sci., 46, 1453-1461 (1989)
[20] Durran, D. R., A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow, J. Fluid Mech., 601, 365-379 (2008) · Zbl 1151.76572
[21] Ghizaru, M.; Charbonneau, P.; Smolarkiewicz, P. K., Magnetic cycles in global large-eddy simulations of solar convection, Astrophys. J. Lett., 715, L133-L137 (2010)
[22] Issa, R. I., Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys., 62, 40-65 (1985) · Zbl 0619.76024
[23] Jablonowski, C.; Williamson, D. L., A baroclinic instability test case for atmospheric model dynamical cores, Q. J. R. Meteorol. Soc., 132, 2943-2975 (2006)
[24] Klemp, J. B.; Wilhelmson, R. B., The simulation of three-dimensional convective storm dynamics, J. Atmos. Sci., 35, 1070-1096 (1978)
[25] Klein, R., Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: One-dimensional flow, J. Comput. Phys., 121, 213-237 (1995) · Zbl 0842.76053
[26] Klein, R., Asymptotics, structure, and integration of sound-proof atmospheric flow equations, Theor. Comput. Fluid Dyn., 23, 161-195 (2009) · Zbl 1234.76044
[27] Klein, R.; Achatz, U.; Bresch, D.; Knio, O. M.; Smolarkiewicz, P. K., Regime of validity of soundproof atmospheric flow models, J. Atmos. Sci., 67, 3226-3237 (2010)
[28] Klein, R., On the regime of validity of sound-proof model equations for atmospheric flows, (Proceedings of the ECMWF Workshop on Nonhydrostatic Modelling. Proceedings of the ECMWF Workshop on Nonhydrostatic Modelling, 8-10 November 2010, Reading, UK (2011)), 35-53
[29] Konor, C. S., Design of a dynamical core based on the nonhydrostatic “unified system” of equations, Mon. Weather Rev., 142, 1, 364-385 (2014)
[30] Kühnlein, C.; Smolarkiewicz, P. K.; Dörnbrack, A., Modelling atmospheric flows with adaptive moving meshes, J. Comput. Phys., 231, 2741-2763 (2012) · Zbl 1426.76390
[31] Kurowski, M.; Grabowski, W. W.; Smolarkiewicz, P. K., Towards multiscale simulation of moist flows with soundproof equations, J. Atmos. Sci., 70, 3995-4011 (2013)
[32] Laprise, R., The Euler equations of motion with hydrostatic pressure as an independent variable, Mon. Weather Rev., 120, 197-207 (1992)
[33] Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows, J. Comput. Phys., 95, 59-84 (1991) · Zbl 0725.76090
[34] Laprise, R., Regional climate modelling, J. Comput. Phys., 277, 3641-3666 (2008) · Zbl 1132.86307
[35] Lipps, F. B.; Hemler, R. S., A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci., 39, 2192-2210 (1982)
[36] Lipps, F. B., On the anelastic approximation for deep convection, J. Atmos. Sci., 47, 1794-1798 (1990)
[37] Müller, E. H.; Scheichl, R., Massively parallel solvers for elliptic PDEs in numerical weather and climate prediction, Q. J. R. Meteorol. Soc. (2014)
[38] Munz, C. D.; Roller, S.; Klein, R.; Geratz, K. J., The extension of incompressible flow solvers to the weakly compressible regime, Comput. Fluids, 37, 1193-1207 (2008)
[39] Piotrowski, Z. P.; Wyszogrodzki, A. A.; Smolarkiewicz, P. K., Towards petascale simulations of atmospheric circulations with soundproof models, Acta Geophys., 59, 1294-1311 (2011)
[40] Prusa, J. M.; Smolarkiewicz, P. K.; Garcia, R. R., Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing, J. Atmos. Sci., 53, 2186-2216 (1996)
[41] Prusa, J. M.; Smolarkiewicz, P. K., An all-scale anelastic model for geophysical flows: dynamic grid deformation, J. Comput. Phys., 190, 601-622 (2003) · Zbl 1076.86001
[42] Prusa, J. M.; Smolarkiewicz, P. K.; Wyszogrodzki, A. A., EULAG, a computational model for multiscale flows, Comput. Fluids, 37, 1193-1207 (2008) · Zbl 1237.76107
[43] Prusa, J. M.; Gutowski, W. J., Multi-scale features of baroclinic waves in soundproof, global simulations with EULAG, (Proc. V European Conference on Computational Fluid Dynamics. Proc. V European Conference on Computational Fluid Dynamics, Lisbon, Portugal (2010)), ECCOMAS paper #1453, 18 pp
[44] Reisner, J. M.; Mousseau, V. A.; Wyszogrodzki, A. A.; Knoll, D. A., An implicitly balanced hurricane model with physics-based preconditioning, Mon. Weather Rev., 133, 1002-1003 (2005)
[45] Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S., Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations, J. Comput. Phys., 227, 3486-3514 (2008) · Zbl 1132.86311
[46] Schär, C.; Smolarkiewicz, P. K., A synchronous and iterative flux-correction formalism for coupled transport equations, J. Comput. Phys., 128, 101-120 (1996) · Zbl 0861.76054
[47] Schneider, T.; Botta, N.; Geratz, K. J.; Klein, R., Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows, J. Comput. Phys., 155, 248-286 (1999) · Zbl 0968.76054
[48] Seity, Y.; Brousseau, P.; Malardel, S.; Hello, G.; Bénard, P.; Bouttier, F.; Lac, C.; Masson, V., The AROME-France convective-scale operational model, Mon. Weather Rev., 139, 976-991 (2011)
[49] Skamarock, W. C.; Klemp, J. B., A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465-3485 (2008) · Zbl 1132.86312
[50] Skamarock, W. C.; Klemp, J. B.; Duda, M. G.; Fowler, L. D.; Park, S.-H.; Ringler, T. D., A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering, Mon. Weather Rev., 140, 3090-3105 (2012)
[51] Smolarkiewicz, P. K., A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comput. Phys., 54, 325-362 (1984)
[52] Smolarkiewicz, P. K.; Clark, T. L., The multidimensional positive definite advection transport algorithm; Further developments and applications, J. Comput. Phys., 67, 396-438 (1986) · Zbl 0601.76098
[53] Smolarkiewicz, P. K.; Grabowski, W. W., The multidimensional positive definite advection transport algorithm: nonoscillatory option, J. Comput. Phys., 86, 355-375 (1990) · Zbl 0698.76100
[54] Smolarkiewicz, P. K.; Pudykiewicz, J. A., A class of semi-Lagrangian approximations for fluids, J. Atmos. Sci., 49, 2082-2096 (1992)
[55] Smolarkiewicz, P. K.; Grell, G. A., A class of monotone interpolation schemes, J. Comput. Phys., 101, 431-440 (1992) · Zbl 0761.65005
[56] Smolarkiewicz, P. K.; Margolin, L. G., On forward-in-time differencing for fluids: Extension to a curvilinear framework, Mon. Weather Rev., 121, 1847-1859 (1993)
[57] Smolarkiewicz, P. K.; Margolin, L. G., MPDATA, a finite-difference solver for geophysical flows, J. Comput. Phys., 140, 459-480 (1998) · Zbl 0935.76064
[58] Smolarkiewicz, P. K.; Margolin, L. G.; Wyszogrodzki, A. A., A class of nonhydrostatic global models, J. Atmos. Sci., 58, 349-364 (2001)
[59] Smolarkiewicz, P. K.; Temperton, C.; Thomas, S. J.; Wyszogrodzki, A. A., Spectral preconditioners for nonhydrostatic atmospheric models: extreme applications, (Proc. ECMWF Seminar Series on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling. Proc. ECMWF Seminar Series on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, 6-10 September, 2004, Reading, UK (2004))
[60] Smolarkiewicz, P. K.; Szmelter, J., MPDATA: An edge-based unstructured-grid formulation, J. Comput. Phys., 206, 624-649 (2005) · Zbl 1070.65080
[61] Smolarkiewicz, P. K., Multidimensional positive definite advection transport algorithm: an overview, Int. J. Numer. Methods Fluids, 50, 1123-1144 (2006) · Zbl 1329.76215
[62] Smolarkiewicz, P. K.; Dörnbrack, A., Conservative integrals of adiabatic Durran’s equations, Int. J. Numer. Methods Fluids, 56, 1529-1534 (2008) · Zbl 1384.86005
[63] Smolarkiewicz, P. K.; Szmelter, J., Iterated upwind schemes for gas dynamics, J. Comput. Phys., 228, 33-54 (2009) · Zbl 1277.76065
[64] Smolarkiewicz, P. K., Modeling atmospheric circulations with soundproof equations, (Proceedings of the ECMWF Workshop on Nonhydrostatic Modelling. Proceedings of the ECMWF Workshop on Nonhydrostatic Modelling, 8-10 November 2010, Reading, UK (2011)), 1-15
[65] Smolarkiewicz, P. K.; Szmelter, J., A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves, Acta Geophys., 59, 1109-1134 (2011)
[66] Smolarkiewicz, P. K.; Charbonneau, P., EULAG, a computational model for multiscale flows: An MHD extension, J. Comput. Phys., 236, 608-623 (2013)
[67] Smolarkiewicz, P. K.; Szmelter, J.; Wyszogrodzki, A. A., An unstructured-mesh atmospheric model for nonhydrostatic dynamics, J. Comput. Phys., 254, 184-199 (2013) · Zbl 1349.86013
[68] Steppeler, J.; Hess, R.; Schättler, U.; Bonaventura, L., Review of numerical methods for nonhydrostatic weather prediction models, Meteorol. Atmos. Phys., 82, 287-301 (2003)
[69] Szmelter, J.; Smolarkiewicz, P. K., MPDATA error estimator for mesh adaptivity, Int. J. Numer. Methods Fluids, 50, 1269-1293 (2006) · Zbl 1329.76216
[70] Szmelter, J.; Smolarkiewicz, P. K., An edge-based unstructured mesh discretisation in geospherical framework, J. Comput. Phys., 229, 4980-4995 (2010) · Zbl 1346.76097
[71] Tapp, M. C.; White, P. W., A non-hydrostatic mesoscale model, Q. J. R. Meteorol. Soc., 102, 277-296 (1976)
[72] Warn-Varnas, A.; Hawkins, J.; Smolarkiewicz, P. K.; Chin-Bing, S. A.; King, D.; Hallock, Z., Solitary wave effects north of strait of Messina, Ocean Model., 18, 97-121 (2007)
[73] Wedi, N. P.; Smolarkiewicz, P. K., Extending Gal-Chen and Somerville terrain-following coordinate transformation on time dependent curvilinear boundaries, J. Comput. Phys., 193, 1-20 (2004) · Zbl 1117.76307
[74] Wedi, N. P.; Smolarkiewicz, P. K., Direct numerical simulation of the Plumb-McEwan laboratory analog of the QBO, J. Atmos. Sci., 63, 3326-3352 (2006)
[75] Wedi, N. P.; Smolarkiewicz, P. K., A framework for testing global nonhydrostatic models, Q. J. R. Meteorol. Soc., 135, 469-484 (2009)
[76] Wedi, N. P.; Hamrud, M.; Mozdzynski, G.; Austad, G.; Curic, S.; Bidlot, J., Global, non-hydrostatic, convection-permitting, medium-range forecasts: progress and challenges, ECMWF Newslett., 133, 17-22 (2012)
[77] Wood, N.; Staniforth, A.; White, A.; Allen, T.; Diamantakis, M.; Gross, M.; Melvin, T.; Smith, C.; Vosper, S.; Zerroukat, M.; Thuburn, J., An inherently mass-conserving semi-implicit semi-Lagrangian discretisation of the deep-atmosphere global non-hydrostatic equations, Q. J. R. Meteorol. Soc. (2014), in press
[78] Yeh, K.-S.; Côté, J.; Gravel, S.; Méthot, A.; Patoine, A.; Roch, M.; Staniforth, A., The CMC-MRB global environmental multiscale (GEM) model. Part III: Nonhydrostatic formulation, Mon. Weather Rev., 130, 339-356 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.