×

Direct arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws. (English) Zbl 1349.76312

Summary: In this paper we present a new family of efficient high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-MOOD finite volume schemes for the solution of nonlinear hyperbolic systems of conservation laws for moving unstructured triangular and tetrahedral meshes. This family is the next generation of the ALE ADER-WENO schemes presented in [16,20]. Here, we use again an element-local space-time Galerkin finite element predictor method to achieve a high order accurate one-step time discretization, while the somewhat expensive WENO approach on moving meshes, used to obtain high order of accuracy in space, is replaced by an a posteriori MOOD loop which is shown to be less expensive but still as accurate. This a posteriori MOOD loop ensures the numerical solution in each cell at any discrete time level to fulfill a set of user-defined detection criteria. If a cell average does not satisfy the detection criteria, then the solution is locally re-computed by progressively decrementing the order of the polynomial reconstruction, following a so-called cascade of predefined schemes with decreasing approximation order. A so-called parachute scheme, typically a very robust first order Godunov-type finite volume method, is employed as a last resort for highly problematic cells. The cascade of schemes defines how the decrementing process is carried out, i. e. how many schemes are tried and which orders are adopted for the polynomial reconstructions. The cascade and the parachute scheme are choices of the user or the code developer. Consequently the iterative MOOD loop allows the numerical solution to maintain some interesting properties such as positivity, mesh validity, etc., which are otherwise difficult to ensure. We have applied our new high order unstructured direct ALE ADER-MOOD schemes to the multi-dimensional Euler equations of compressible gas dynamics. A large set of test problems has been simulated and analyzed to assess the validity of our approach in terms of both accuracy and efficiency (CPU time and memory consumption).

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics (general theory)

Software:

RIEMANN; ReALE; MOOD
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, J. Multiph. Flow, 12, 861-889 (1986) · Zbl 0609.76114
[2] Balsara, D., Total variation diminishing scheme for relativistic magneto-hydrodynamics, Astrophys. J. Suppl. Ser., 132, 83-101 (2001)
[3] Balsara, D.; Shu, C. W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452 (2000) · Zbl 0961.65078
[4] Balsara, D. S., Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993 (2010) · Zbl 1303.76140
[5] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504-7517 (2011)
[6] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231, 7476-7503 (2012) · Zbl 1284.76261
[7] Balsara, D. S., Multidimensional Riemann problem with self-similar internal structure. Part I — application to hyperbolic conservation laws on structured meshes, J. Comput. Phys., 277, 163-200 (2014) · Zbl 1349.76303
[8] Balsara, D. S.; Dumbser, M., Multidimensional Riemann problem with self-similar internal structure. Part II — application to hyperbolic conservation laws on unstructured meshes, J. Comput. Phys., 284, 269-292 (2015) · Zbl 1351.76091
[9] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLLC Riemann solver for unstructured meshes — with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208 (2014) · Zbl 1349.76426
[11] Barth, T. J.; Jespersen, D. C., The design and application of upwind schemes on unstructured meshes, 1-12 (1989), AIAA Paper 89-0366
[12] Benson, D. J., Momentum advection on a staggered mesh, J. Comput. Phys., 100, 1, 143-162 (1992) · Zbl 0758.76038
[13] Berndt, M.; Breil, J.; Galera, S.; Kucharik, M.; Maire, P. H.; Shashkov, M., Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 230, 6664-6687 (2011) · Zbl 1408.65077
[14] Bochev, P.; Ridzal, D.; Shashkov, M. J., Fast optimization-based conservative remap of scalar fields through aggregate mass transfer, J. Comput. Phys., 246, 37-57 (2013) · Zbl 1349.65054
[15] Boscheri, W.; Balsara, D. S.; Dumbser, M., Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers, J. Comput. Phys., 267, 112-138 (2014) · Zbl 1349.76309
[16] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes, Commun. Comput. Phys., 14, 1174-1206 (2013) · Zbl 1388.65075
[17] Boscheri, W.; Dumbser, M., An efficient quadrature-free formulation for high order Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on unstructured meshes, J. Sci. Comput. (2014), in press · Zbl 1338.65219
[18] Boscheri, W.; Dumbser, M.; Balsara, D. S., High order Lagrangian ADER-WENO schemes on unstructured meshes - application of several node solvers to hydrodynamics and magnetohydrodynamics, Int. J. Numer. Methods Fluids, 76, 737-778 (2014)
[19] Boscheri, W.; Dumbser, M.; Zanotti, O., High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes, J. Comput. Phys., 291, 120-150 (2015) · Zbl 1349.76311
[20] Boscheri, Walter; Dumbser, Michael, A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, J. Comput. Phys., 275, 484-523 (2014) · Zbl 1349.76310
[21] Breil, J.; Harribey, T.; Maire, P. H.; Shashkov, M. J., A multi-material ReALE method with MOF interface reconstruction, Comput. Fluids, 83, 115-125 (2013) · Zbl 1290.76094
[22] Caramana, E. J.; Loubère, R., “curl-q”: a vorticity damping artificial viscosity for essentially irrotational Lagrangian hydrodynamics calculations, J. Comput. Phys., 215, 2, 385-391 (2006) · Zbl 1173.76380
[23] Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146, 227-262 (1998) · Zbl 0931.76080
[24] Caramana, E. J.; Rousculp, C. L.; Burton, D. E., A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three-dimensional Cartesian geometry, J. Comput. Phys., 157, 89-119 (2000) · Zbl 0961.76049
[25] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 5160-5183 (2009) · Zbl 1168.76029
[26] Cesenek, J.; Feistauer, M.; Horacek, J.; Kucera, V.; Prokopova, J., Simulation of compressible viscous flow in time-dependent domains, Appl. Math. Comput., 219, 7139-7150 (2013) · Zbl 1426.76233
[27] Cheng, J.; Shu, C. W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, J. Comput. Phys., 227, 1567-1596 (2007) · Zbl 1126.76035
[28] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws — multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 10, 4028-4050 (2011) · Zbl 1218.65091
[29] Clain, S.; Diot, S.; Loubère, R., Multi-dimensional optimal order detection (mood) - a very high-order finite volume scheme for conservation laws on unstructured meshes, (Fort, J.; Fürst, J.; Halama, J.; Herbin, R.; Hubert, F., FVCA 6. FVCA 6, International Symposium, Prague, June 6-10. FVCA 6. FVCA 6, International Symposium, Prague, June 6-10, Springer Proc. Math., vol. 4 (2011)), 263-271, XVII+1065 pp., 106 illus. in color · Zbl 1246.76073
[30] Clain, S.; Machado, G., A very high-order finite volume method for the time-dependent convection-diffusion problem with Butcher Tableau extension, Comput. Math. Appl., 68, 1292-1311 (2014) · Zbl 1367.65123
[31] Clain, Stéphane; Machado, Gaspar J.; Nóbrega, J. M.; Pereira, R. M.S., A sixth-order finite volume method for multidomain convection-diffusion problem with discontinuous coefficients, Comput. Methods Appl. Mech. Eng., 267, 43-64 (2013) · Zbl 1286.80003
[32] Claisse, A.; Després, B.; Labourasse, E.; Ledoux, F., A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes, J. Comput. Phys., 231, 4324-4354 (2012) · Zbl 1426.76350
[33] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., Discontinuous Galerkin Methods, Lect. Notes Comput. Sci. Eng. (2000), Springer · Zbl 0935.00043
[34] Colella, P.; Sekora, M. D., A limiter for PPM that preserves accuracy at smooth extrema, J. Comput. Phys., 227, 7069-7076 (2008) · Zbl 1152.65090
[35] Després, B.; Mazeran, C., Symmetrization of Lagrangian gas dynamic in dimension two and multimdimensional solvers, C. R., Méc., 331, 475-480 (2003) · Zbl 1293.76089
[36] Després, B.; Mazeran, C., Lagrangian gas dynamics in two-dimensions and Lagrangian systems, Arch. Ration. Mech. Anal., 178, 327-372 (2005) · Zbl 1096.76046
[37] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63 (2012) · Zbl 1365.76149
[38] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int. J. Numer. Methods Fluids, 73, 362-392 (2013) · Zbl 1455.65147
[39] Dobrev, V.; Kolev, T.; Rieben, R., High-order curvilinear finite element methods for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 34, 5, B606-B641 (2012) · Zbl 1255.76076
[40] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., Curvilinear finite elements for Lagrangian hydrodynamics, Int. J. Numer. Methods Fluids, 65, 1295-1310 (2011) · Zbl 1255.76075
[41] Dobrev, Veselin A.; Ellis, Truman E.; Kolev, Tzanio V.; Rieben, Robert N., High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, Numerical Methods for Highly Compressible Multi-material Flow Problems. Numerical Methods for Highly Compressible Multi-material Flow Problems, Comput. Fluids, 83, 58-69 (2013) · Zbl 1290.76061
[42] Dubcova, L.; Feistauer, M.; Horacek, J.; Svacek, P., Numerical simulation of interaction between turbulent flow and a vibrating airfoil, Comput. Vis. Sci., 12, 207-225 (2009) · Zbl 1426.74127
[43] Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6, 345-390 (1991) · Zbl 0742.76059
[44] Dukovicz, J. K.; Meltz, B., Vorticity errors in multidimensional Lagrangian codes, J. Comput. Phys., 99, 115-134 (1992) · Zbl 0743.76058
[45] Dumbser, M., Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws, Comput. Methods Appl. Mech. Eng., 280, 57-83 (2014) · Zbl 1423.76296
[46] Dumbser, M.; Balsara, D.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[47] Dumbser, M.; Boscheri, W., High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows, Comput. Fluids, 86, 405-432 (2013) · Zbl 1290.76081
[48] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227, 3971-4001 (2008) · Zbl 1142.65070
[49] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723 (2007) · Zbl 1110.65077
[50] Dumbser, M.; Käser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226, 204-243 (2007) · Zbl 1124.65074
[51] Dumbser, M.; Toro, E. F., On universal Osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 635-671 (2011) · Zbl 1373.76125
[52] Dumbser, M.; Uuriintsetseg, A.; Zanotti, O., On Arbitrary-Lagrangian-Eulerian one-step WENO schemes for stiff hyperbolic balance laws, Commun. Comput. Phys., 14, 301-327 (2013) · Zbl 1373.76126
[53] Feistauer, M.; Horacek, J.; Ruzicka, M.; Svacek, P., Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom, Comput. Fluids, 49, 110-127 (2011) · Zbl 1271.76165
[54] Feistauer, M.; Kucera, V.; Prokopova, J.; Horacek, J., The ALE discontinuous Galerkin method for the simulation of air flow through pulsating human vocal folds, AIP Conf. Proc., 1281, 83-86 (2010)
[55] Francois, M. M.; Shashkov, M. J.; Masser, T. O.; Dendy, E. D., A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation, Comput. Fluids, 83, 126-136 (2013) · Zbl 1290.76133
[56] Vilar, F., Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics, Comput. Fluids, 64, 64-73 (2012) · Zbl 1365.76129
[57] Vilar, F.; Maire, P. H.; Abgrall, R., Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics, Comput. Fluids, 46, 1, 498-604 (2010) · Zbl 1433.76093
[58] Vilar, F.; Maire, P. H.; Abgrall, R., A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids, J. Comput. Phys., 276, 188-234 (2014) · Zbl 1349.76278
[59] Galera, S.; Maire, P. H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ale scheme using VoF interface reconstruction, J. Comput. Phys., 229, 5755-5787 (2010) · Zbl 1346.76105
[60] Gavrilyuk, S. L.; Favrie, N.; Saurel, R., Modelling wave dynamics of compressible elastic materials, J. Comput. Phys., 227, 2941-2969 (2008) · Zbl 1155.74020
[61] Giacomazzo, B.; Rezzolla, L., The exact solution of the Riemann problem in relativistic magnetohydrodynamics, J. Fluid Mech., 562, 223-259 (2006) · Zbl 1097.76073
[62] Godunov, S. K.; Romenski, E. I., Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates, J. Appl. Mech. Tech. Phys., 13, 868-885 (1972)
[63] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J. Sci. Comput., 48, 173-189 (2011) · Zbl 1221.65231
[64] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 3, 227-253 (March 1974) · Zbl 0292.76018
[65] Honkkila, V.; Janhunen, P., HLLC solver for ideal relativistic MHD, J. Comput. Phys., 223, 643-656 (2007) · Zbl 1111.76036
[66] Hu, C.; Shu, C. W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97-127 (1999) · Zbl 0926.65090
[67] Jiang, G.-S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[68] Kamm, J. R.; Timmes, F. X., On efficient generation of numerically robust Sedov solutions (2007), Los Alamos National Laboratory, Technical Report LA-UR-07-2849
[69] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp Element Methods in CFD (1999), Oxford University Press · Zbl 0924.76078
[70] Käser, M.; Iske, A., ADER schemes on adaptive triangular meshes for scalar conservation laws, J. Comput. Phys., 205, 486-508 (2005) · Zbl 1072.65116
[71] Kidder, R. E., Laser-driven compression of hollow shells: power requirements and stability limitations, Nucl. Fusion, 1, 3-14 (1976)
[72] Knupp, P. M., Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part ii — a framework for volume mesh optimization and the condition number of the Jacobian matrix, Int. J. Numer. Methods Eng., 48, 1165-1185 (2000) · Zbl 0990.74069
[73] Kucharik, M.; Breil, J.; Galera, S.; Maire, P. H.; Berndt, M.; Shashkov, M. J., Hybrid remap for multi-material ALE, Comput. Fluids, 46, 293-297 (2011) · Zbl 1433.76133
[74] Kucharik, M.; Shashkov, M. J., One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 231, 2851-2864 (2012) · Zbl 1323.74108
[75] Li, Z.; Yu, X.; Jia, Z., The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions, Comput. Fluids, 96, 152-164 (2014) · Zbl 1391.76347
[76] Liska, R.; Shashkov, M. J.; Váchal, P.; Wendroff, B., Synchronized flux corrected remapping for ALE methods, Comput. Fluids, 46, 312-317 (2011) · Zbl 1433.76135
[77] Liu, W.; Cheng, J.; Shu, C. W., High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations, J. Comput. Phys., 228, 8872-8891 (2009) · Zbl 1287.76181
[78] Loubère, R.; Dumbser, M.; Diot, S., A new family of high order unstructured mood and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 718-763 (2014) · Zbl 1373.76137
[79] Loubère, R.; Maire, P.-H.; Váchal, P., Staggered Lagrangian hydrodynamics based on cell-centered Riemann solver, Commun. Comput. Phys., 10, 4, 940-978 (2010) · Zbl 1373.76138
[80] Loubère, R.; Maire, P. H.; Váchal, P., A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver, Proc. Comput. Sci., 1, 1931-1939 (2010) · Zbl 1432.76206
[81] Loubère, R.; Maire, P. H.; Váchal, P., 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity, Int. J. Numer. Methods Fluids, 72, 22-42 (2013) · Zbl 1455.76164
[82] Loubère, Raphaël; Maire, Pierre-Henri; Shashkov, Mikhail Yu.; Breil, Jérôme; Galera, Stéphane, Reale: a reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys., 229, 12, 4724-4761 (2010) · Zbl 1305.76067
[83] Maire, P. H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys., 228, 2391-2425 (2009) · Zbl 1156.76434
[84] Maire, P. H., A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Comput. Fluids, 46, 1, 341-347 (2011) · Zbl 1433.76137
[85] Maire, P. H., A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Int. J. Numer. Methods Fluids, 65, 1281-1294 (2011) · Zbl 1429.76089
[86] Maire, P. H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 1781-1824 (2007) · Zbl 1251.76028
[87] Maire, P. H.; Breil, J., A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, Int. J. Numer. Methods Fluids, 56, 1417-1423 (2007) · Zbl 1151.76021
[88] Maire, P. H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J. Comput. Phys., 228, 799-821 (2009) · Zbl 1156.76039
[89] Munz, C. D., On Godunov-type schemes for Lagrangian gas dynamics, SIAM J. Numer. Anal., 31, 17-42 (1994) · Zbl 0796.76057
[90] Von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 232-237 (1950) · Zbl 0037.12002
[91] Noh, W. F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. Comput. Phys., 72, 78-120 (1987) · Zbl 0619.76091
[92] Olliver-Gooch, C.; Van Altena, M., A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, J. Comput. Phys., 181, 729-752 (2002) · Zbl 1178.76251
[93] López Ortega, A.; Scovazzi, G., A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements, J. Comput. Phys., 230, 6709-6741 (2011) · Zbl 1284.76255
[94] Peery, J. S.; Carroll, D. E., Multi-material ale methods in unstructured grids, Comput. Methods Appl. Mech. Eng., 187, 591-619 (2000) · Zbl 0980.74068
[96] Rezzolla, L.; Zanotti, O., An improved exact Riemann solver for relativistic hydrodynamics, J. Fluid Mech., 449, 395-411 (2001) · Zbl 1009.76101
[97] Clain Ricardo Costa, Stéphane; Machado, Gaspar J., Sixth-order finite volume method for the 1D biharmonic operator: application to the intramedullary nail simulation, Int. J. Appl. Math. Comput. Sci. (2014) · Zbl 1451.65118
[98] Rider, William J., Revisiting wall heating, J. Comput. Phys., 162, 2, 395-410 (August 2000) · Zbl 0977.76041
[99] Loubère, R.; Shashkov, M. J., A subcell remapping method on staggered polygonal grids for Arbitrary-Lagrangian-Eulerian methods, J. Comput. Phys., 209, 105-138 (2005) · Zbl 1329.76236
[100] Saurel, R.; Lemetayer, O., A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 431, 239-271 (2001) · Zbl 1039.76069
[101] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267-279 (1961)
[102] Saltzman, J.; Colella, P., Second order upwind transport methods for Lagrangian hydrodynamics (1985), Los Alamos National Laboratory, Technical Report
[103] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids, Int. J. Numer. Methods Fluids, 72, 770-810 (2013) · Zbl 1455.74019
[104] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes, Comput. Fluids, 83, 98-114 (2013) · Zbl 1290.76107
[105] Scovazzi, G., Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach, J. Comput. Phys., 231, 8029-8069 (2012)
[106] Sedov, L. I., Similarity and Dimensional Methods in Mechanics (1959), Academic Press: Academic Press New York · Zbl 0121.18504
[107] Shu, C. W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic Conservation Laws (November 1997), NASA/CR-97-206253 ICASE Report No. 97-65
[108] Smith, R. W., AUSM(ALE): a geometrically conservative arbitrary Lagrangian-Eulerian flux splitting scheme, J. Comput. Phys., 150, 268-286 (1999) · Zbl 0936.76046
[109] Stroud, A. H., Approximate Calculation of Multiple Integrals (1971), Prentice-Hall Inc.: Prentice-Hall Inc. Englewood Cliffs, New Jersey · Zbl 0379.65013
[110] Suresh, A.; Huynh, H. T., Accurate monotonicity-preserving schemes with Runge-Kutta time stepping, J. Comput. Phys., 136, 83-99 (1997) · Zbl 0886.65099
[111] Titarev, V. A.; Romenski, E. I.; Toro, E. F., MUSTA-type upwind fluxes for non-linear elasticity, Int. J. Numer. Methods Eng., 73, 897-926 (2008) · Zbl 1159.74046
[112] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618 (December 2002) · Zbl 1024.76028
[113] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736 (2005) · Zbl 1060.65641
[114] Titarev, V. A.; Tsoutsanis, P.; Drikakis, D., WENO schemes for mixed-element unstructured meshes, Commun. Comput. Phys., 8, 585-609 (2010) · Zbl 1364.76121
[115] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165 (2006) · Zbl 1087.65590
[116] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Springer · Zbl 0923.76004
[117] Toro, E. F., Anomalies of conservative methods: analysis, numerical evidence and possible cures, Int. J. Comput. Fluid Dyn., 11, 128-143 (2002)
[118] Tsoutsanis, P.; Titarev, V. A.; Drikakis, D., WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions, J. Comput. Phys., 230, 1585-1601 (2011) · Zbl 1210.65160
[119] Desveaux, V., Contribution à l’approximation numérique des systèmes hyperboliques (2013), Université de Nantes, PhD thesis
[120] Desveaux, V.; Berthon, C., An entropic mood scheme for the Euler equations, Int. J. Finite Vol. (2013)
[121] Wilkins, M. L., Calculation of elastic plastic flow, (Alder, B.; Fernbach, S.; Rotenberg, M., Methods in Computational Physics, vol. 3 (1964), Academic Press: Academic Press New York), 211-263
[122] Winslow, Alan M., Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh, J. Comput. Phys., 135, 2, 128-138 (August 1997) · Zbl 0890.65123
[123] Yanilkin, Y. V.; Goncharov, E. A.; Kolobyanin, V. Y.; Sadchikov, V. V.; Kamm, J. R.; Shashkov, M. J.; Rider, W. J., Multi-material pressure relaxation methods for Lagrangian hydrodynamics, Comput. Fluids, 83, 137-143 (2013) · Zbl 1290.76138
[124] Del Zanna, L.; Bucciantini, N.; Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows II. Magnetohydrodynamics, Astron. Astrophys., 400, 397-413 (2003) · Zbl 1222.76122
[125] Zanotti, O.; Dumbser, M.; Loubère, R.; Diot, S., A posteriori subcell limiting for discontinuous Galerkin finite element method for hyperbolic system of conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.