×

A fully spectral methodology for magnetohydrodynamic calculations in a whole sphere. (English) Zbl 1349.76900

Summary: We present a fully spectral methodology for magnetohydrodynamic (MHD) calculations in a whole sphere. The use of Jones-Worland polynomials for the radial expansion guarantees that the physical variables remain infinitely differentiable throughout the spherical volume. Furthermore, we present a mathematically motivated and systematic strategy to relax the very stringent time step constraint that is present close to the origin when a spherical harmonic expansion is used for the angular direction. The new constraint allows for significant savings even on relatively simple solutions as demonstrated on the so-called full sphere benchmark, a specific problem with a very accurately-known solution. The numerical implementation uses a 2D data decomposition which allows it to scale to thousands of cores on present-day high performance computing systems. In addition to validation results, we also present three new whole sphere dynamo solutions that present a relatively simple structure.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76M22 Spectral methods applied to problems in fluid mechanics
86A25 Geo-electricity and geomagnetism

Software:

SHTns; DLMF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ascher, U. M.; Ruuth, S. J.; Wetton, B. T.R., Implicit explicit methods for time-dependent partial-differential equations, SIAM J. Numer. Anal., 32, 3, 797-823 (Jun. 1995)
[3] Birta, L. G.; Yang, M.; Abourabia, O., An adaptive approach to stepsize control in ode solvers, Math. Comput. Simul., 35, 1, 63-78 (Feb. 1993)
[4] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover Publications · Zbl 0994.65128
[5] Braginsky, S. I.; Roberts, P. H., Equations governing convection in Earth’s core and the geodynamo, Geophys. Astrophys. Fluid Dyn., 79, 1-4, 1-97 (1995)
[6] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), Clarendon Press: Clarendon Press Oxford · Zbl 0142.44103
[7] Christensen, U.; Olson, P.; Glatzmaier, G. A., Numerical modelling of the geodynamo: a systematic parameter study, Geophys. J. Int., 138, 2, 393-409 (1999)
[8] Christensen, U. R.; Aubert, J.; Cardin, P.; Dormy, E.; Gibbons, S.; Glatzmaier, G. A.; Grote, E.; Honkura, Y.; Jones, C.; Kono, M.; Matsushima, M.; Sakuraba, A.; Takahashi, F.; Tilgner, A.; Wicht, J.; Zhang, K., A numerical dynamo benchmark, Phys. Earth Planet. Inter., 128, 25-34 (Dec. 2001)
[9] Davidson, P. A., An Introduction to Magnetohydrodynamics (2001), Cambridge University Press: Cambridge University Press Cambridge Books Online · Zbl 0974.76002
[10] Gautschi, W., Computational aspects of three-term recurrence relations, SIAM Rev., 9, 24-82 (1967) · Zbl 0168.15004
[11] Glatzmaier, G. A.; Roberts, P. H., A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle, Phys. Earth Planet. Inter., 91, 13, 63-75 (1995)
[12] Golub, G. H.; Welsch, J. H., Calculation of Gauss quadrature rules, Math. Comput., 23, 106, 221-230 (Apr. 1969), +s1-s10
[13] Gustafsson, K.; Soderlind, G., Control strategies for the iterative solution of nonlinear equations in ODE solvers, SIAM J. Sci. Comput., 18, 1, 23-40 (Jan. 1997)
[14] Hollerbach, R., The Range of Timescales on which the Geodynamo Operates, Earth’s Core: Dynamics, Structure, Rotation, vol. 31 (2003), Amer. Geophys. Union
[15] Hollerbach, R.; Nore, C.; Marti, P.; Vantieghem, S.; Luddens, F.; Léorat, J., Parity-breaking flows in precessing spherical containers, Phys. Rev. E, 87, Article 053020 pp. (May 2013)
[16] Jackson, A.; Sheyko, A.; Marti, P.; Tilgner, A.; Cébron, D.; Vantieghem, S.; Simitev, R.; Busse, F.; Zhan, X.; Schubert, G.; Takehiro, S.; Sasaki, Y.; Hayashi, Y.-Y.; Ribeiro, A.; Nore, C.; Guermond, J.-L., A spherical shell numerical dynamo benchmark with pseudo-vacuum magnetic boundary conditions, Geophys. J. Int., 196, 2, 712-723 (2014)
[17] Julien, K.; Watson, M., Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods, J. Comp. Phys., 1480-1503 (2009) · Zbl 1166.65325
[18] Lanczos, C., Trigonometric interpolation of empirical and analytical functions, J. Math. Phys., 17, 123-129 (1938) · Zbl 0020.01301
[19] Li, K.; Livermore, P. W.; Jackson, A., An optimal Galerkin scheme to solve the kinematic dynamo eigenvalue problem in a full sphere, J. Comput. Phys., 229, 23, 8666-8683 (2010) · Zbl 1220.78120
[20] Lin, Y.; Marti, P.; Noir, J., Shear-driven parametric instability in a precessing sphere, Phys. Fluids, 27, 4, Article 046601 pp. (2015)
[21] Livermore, P. W.; Jones, C. A.; Worland, S. J., Spectral radial basis functions for full sphere computations, J. Comput. Phys., 227, 2, 1209-1224 (2007) · Zbl 1128.65016
[22] Marti, P.; Schaeffer, N.; Hollerbach, R.; Cébron, D.; Nore, C.; Luddens, F.; Guermond, J.-L.; Aubert, J.; Takehiro, S.; Sasaki, Y.; Hayashi, Y.-Y.; Simitev, R.; Busse, F.; Vantieghem, S.; Jackson, A., Full sphere hydrodynamic and dynamo benchmarks, Geophys. J. Int., 197, 1, 119-134 (2014)
[23] Matsushima, T.; Marcus, P., A spectral method for polar coordinates, J. Comput. Phys., 120, 2, 365-374 (1995) · Zbl 0842.65051
[24] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge University Press: Cambridge University Press New York, NY) · Zbl 1198.00002
[25] Phillips, T. N.; Soliman, I. M., Influence matrix technique for the numerical spectral simulation of viscous incompressible flows, Numer. Methods Partial Differ. Equ., 7, 1, 9-24 (1991) · Zbl 0712.76071
[26] Roberts, P. H.; Wu, C.-C., On the modified Taylor constraint, Geophys. Astrophys. Fluid Dyn., 108, 6, 696-715 (2014) · Zbl 07657794
[27] Schaeffer, N., Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, Geochem. Geophys. Geosyst., 14, 3, 751-758 (2013)
[28] Schmidt, A., Erdmagnetismus, Enzyklopädie der mathematischen Wissenschaften, 265-396 (1917) · JFM 48.1091.03
[29] Smith, W. E.; Sloan, I. H., Product-integration rules based on the zeros of Jacobi-polynomials, SIAM J. Numer. Anal., 17, 1, 1-13 (1980) · Zbl 0429.41023
[30] Stellmach, S.; Hansen, U., An efficient spectral method for the simulation of dynamos in Cartesian geometry and its implementation on massively parallel computers, Geochem. Geophys. Geosyst., 9, 5 (2008)
[31] Stevenson, D. J., Planetary magnetic fields, Earth Planet. Sci. Lett., 208, 1-2, 1-11 (2003)
[32] Takahashi, F.; Matsushima, M.; Honkura, Y., Scale variability in convection-driven MHD dynamos at low Ekman number, Phys. Earth Planet. Inter., 167, 34, 168-178 (2008)
[33] Tarduno, J. A.; Cottrell, R. D.; Watkeys, M. K.; Hofmann, A.; Doubrovine, P. V.; Mamajek, E. E.; Liu, D.; Sibeck, D. G.; Neukirch, L. P.; Usui, Y., Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago, Science, 327, 5970, 1238-1240 (2010)
[34] Usman, A.; Hall, G., Equilibrium states for predictor-corrector methods, J. Comput. Appl. Math., 89, 2, 275-308 (Mar. 1998)
[35] Usman, A.; Hall, G., Alternative stepsize strategies for Adams predictor-corrector codes, J. Comput. Appl. Math., 116, 1, 105-120 (Apr. 2000)
[36] Verkley, W., A spectral model for two-dimensional incompressible fluid flow in a circular basin, J. Comput. Phys., 136, 1, 100-114 (1997) · Zbl 0889.76071
[37] Worland, S., Magnetoconvection in rapidly rotating spheres (2004), University of Exeter, PhD thesis
[38] Zatman, S.; Bloxham, J., On the dynamical implications of models of Bs in the Earth’s core, Geophys. J. Int., 138, 3, 679-686 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.