×

Algebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous media. (English) Zbl 1349.76813

Summary: This paper presents the development of an algebraic dynamic multilevel method (ADM) for fully implicit simulations of multiphase flow in homogeneous and heterogeneous porous media. Built on the fine-scale fully implicit (FIM) discrete system, ADM constructs a multilevel FIM system describing the coupled process on a dynamically defined grid of hierarchical nested topology. The multilevel adaptive resolution is determined at each time step on the basis of an error criterion. Once the grid resolution is established, ADM employs sequences of restriction and prolongation operators in order to map the FIM system across the considered resolutions. Several choices can be considered for prolongation (interpolation) operators, e. g., constant, bilinear and multiscale basis functions, all of which form partition of unity. The adaptive multilevel restriction operators, on the other hand, are constructed using a finite-volume scheme. This ensures mass conservation of the ADM solutions, and as such, the stability and accuracy of the simulations with multiphase transport. For several homogeneous and heterogeneous test cases, it is shown that ADM applies only a small fraction of the full FIM fine-scale grid cells in order to provide accurate solutions. The sensitivity of the solutions with respect to the employed fraction of grid cells (determined automatically based on the threshold value of the error criterion) is investigated for all test cases. ADM is a significant step forward in the application of dynamic local grid refinement methods, in the sense that it is algebraic, allows for systematic mapping across different scales, and applicable to heterogeneous test cases without any upscaling of fine-scale high resolution quantities. It also develops a novel multilevel multiscale method for FIM multiphase flow simulations in natural subsurface formations.

MSC:

76S05 Flows in porous media; filtration; seepage
76T10 Liquid-gas two-phase flows, bubbly flows
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

C-AMS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Homsy, G. M., Viscous fingering in porous media, Annu. Rev. Fluid Mech., 19, 271-311 (1987)
[2] Suicmez, V.; Matsuura, T.; Bosch, M.; van Batenburg, D.; Boersma, D., Dynamic local grid refinement for multiple contact miscible gas injection, (International Petroleum Technology Conference (2011)), IPTC-15017-MS
[3] Bell, J.; Shubin, G., An adaptive grid finite difference method for conservation laws, J. Comput. Phys., 52, 569-591 (1983) · Zbl 0517.65066
[4] Heinemann, Z.; Gerken, G.; von Hantelmann, G., Using local grid refinement in a multiple-application reservoir simulator, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, 15-18 November, California, USA (1983)), SPE 12255
[5] Berger, M.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512 (1984) · Zbl 0536.65071
[6] Han, D.; Yan, C.; Peng, L., A more flexible approach of dynamic local grid refinement for reservoir modeling, (SPE Symposium on Reservoir Simulation. SPE Symposium on Reservoir Simulation, 1-4 February, Texas, USA (1987)), SPE 16014
[7] Glimm, J.; Lindquist, B.; McBryan, O.; Plohr, B.; Yaniv, S., Front tracking for petroleum reservoir simulation, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, 15-18 November, California (1983)), SPE 12238
[8] Khan, S.; Trangenstein, J.; Hornung, R.; Shilling, B., Application of adaptive mesh refinement with a new high-order method in simulation of a north sea micellar/polymer flood, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, 12-15 February, Texas, USA (1995)), SPE 29145
[9] Edwards, M., A higher-order Godunov scheme coupled with dynamical local grid refinement for flow in a porous medium, Comput. Methods Appl. Mech. Eng., 131, 287-308 (1996) · Zbl 0888.76052
[10] Hornung, R.; Trangenstein, J., Adaptive mesh refinement and multilevel iteration for flow in porous media, J. Comput. Phys., 136, 522-545 (1997) · Zbl 0898.76074
[11] Boerrigter, M. B.P. M.; de Zwart, A. H.; van Batenburg, D. W.; Vink, J., Application of dynamic gridding techniques to IOR/EOR-processes, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, 21-23 February, Texas, USA (2011)), SPE 141711
[12] Sammon, P. H., Dynamic grid refinement and amalgamation for compositional simulation, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, 21-23 February, Texas, USA (2003)), SPE 79683
[13] Jackson, F. K.M. D.; Muggeridge, A. H.; Mostaghimi, P.; Pain, C. C., A dynamic mesh approach for simulation of immiscible viscous fingering, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, 23-25 February, Texas, USA (2015)), SPE 173281-MS
[14] Bell, J. B.; Lijewski, M. J.; Pau, G. S.H.; Almgren, A. S., A parallel second-order adaptive mesh algorithm for incompressible flow in porous media, Philos. Trans. R. Soc. A, 367, 4633-4654 (2009) · Zbl 1192.76056
[15] Pau, G. S.H.; Bell, J. B.; Almgren, A. S.; Fagnan, K.; Lijewski, M. J., An adaptive mesh refinement algorithm for compressible two-phase flow in porous media, Comput. Geosci., 16, 577-592 (2012)
[16] Hoteit, H.; Chawathé, A., Making field-scale chemical EOR simulations a practical reality using dynamic gridding, (SPE EOR Conference at Oil and Gas West Asia. SPE EOR Conference at Oil and Gas West Asia, 31 March-2 April, Oman (2014)), SPE 169688
[17] Faigle, B.; Helmig, R.; Aavatsmark, I.; Flemisch, B., Efficient multiphysics modelling with adaptive grid refinement using a MPFA method, Comput. Geosci., 18, 625-636 (2014) · Zbl 1392.76076
[18] Nilsson, J.; Gerritsen, M.; Younis, R., A novel adaptive anisotropic grid framework for efficient reservoir simulation, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, 31 January-2 February, Texas, USA (2005)), SPE 93243
[19] Hou, T. Y.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) · Zbl 0880.73065
[20] Efendiev, Y.; Hou, T.; Ginting, V., Multiscale finite element methods for nonlinear problems and their applications, Commun. Math. Sci., 2, 553-589 (2004) · Zbl 1083.65105
[21] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67 (2003) · Zbl 1047.76538
[22] Hajibeygi, H.; Bonfigli, G.; Hesse, M.; Jenny, P., Iterative multiscale finite-volume method, J. Comput. Phys., 227, 8604-8621 (2008) · Zbl 1151.65091
[23] Zhou, H.; Tchelepi, H. A., Operator based multiscale method for compressible flow, SPE J., 13, 267-273 (2008)
[24] Tene, M.; Wang, Y.; Hajibeygi, H., Adaptive algebraic multiscale solver for compressible flow in heterogeneous porous media, J. Comput. Phys., 300, 679-694 (2015) · Zbl 1349.76272
[25] Cusini, M.; Lukyanov, A.; Natvig, J.; Hajibeygi, H., Constrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous media, J. Comput. Phys., 299, 472-486 (2015) · Zbl 1351.76055
[26] Kunze, R.; Lunati, I.; Lee, S. H., A multilevel multiscale finite-volume method, J. Comput. Phys., 225, 502-520 (2013) · Zbl 1349.76351
[27] Christie, M. A.; Blunt, M. J., Tenth SPE comparative solution project: a comparison of upscaling techniques, SPE J., 4, 308-317 (2001)
[28] Aziz, K.; Settari, A., Petroleum Reservoir Simulation (2002), Blitzprint Ltd.: Blitzprint Ltd. Calgary, Alberta
[29] Cheshire, I. M.; Appleyard, J. R.; Banks, D., An efficient fully implicit simulator, (Proceedings of the European Offshore Petroleum Conference and Exhibition. Proceedings of the European Offshore Petroleum Conference and Exhibition, London, United Kingdom (1980)), SPE 179-1980-MS
[30] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, J. Comput. Phys., 217, 627-641 (2006) · Zbl 1160.76373
[31] Zhou, H.; Lee, S.; Tchelepi, H., Multiscale finite-volume formulation for saturation equations, SPE J., 17, 198-211 (2011)
[32] Tchelepi, H. A.; Jenny, P.; Lee, S. H.; Wolfsteiner, C., An adaptive multiphase multiscale finite volume simulator for heterogeneous reservoirs, (19th SPE Reservoir Simulation Symposium. 19th SPE Reservoir Simulation Symposium, Texas, USA (2005)), SPE 93395
[33] Hajibeygi, H., Iterative multiscale finite-volume method for multiphase flow in porous media with complex physics (2011), ETH: ETH Zurich, Switzerland, PhD thesis
[34] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Algebraic multiscale linear solver for heterogeneous elliptic problems, J. Comput. Phys., 259, 284-303 (2014) · Zbl 1349.76835
[35] Hajibeygi, H.; Jenny, P., Adaptive iterative multiscale finite volume method, J. Comput. Phys., 230, 628-643 (2011) · Zbl 1283.76041
[36] Peaceman, D. W., Interpretation of well-block pressures in numerical reservoir simulation, SPE J., 18, 183-194 (1978)
[37] Bonfigli, G.; Jenny, P., An efficient multi-scale Poisson solver for the incompressible Navier-Stokes equations with immersed boundaries, J. Comput. Phys., 228, 4568-4587 (2009) · Zbl 1165.76030
[38] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Monotone multiscale finite volume method, Comput. Geosci., 1-16 (2015)
[39] Trottenberg, U.; Oosterlee, C.; Schueller, A., Multigrid (2001), Elsevier Academic Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.