×

Sparse-grid, reduced-basis Bayesian inversion: nonaffine-parametric nonlinear equations. (English) Zbl 1349.62076


MSC:

62F15 Bayesian inference
65C60 Computational problems in statistics (MSC2010)
65J22 Numerical solution to inverse problems in abstract spaces

Software:

NewtonLib; redbKIT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339, 9, 667-672 (2004) · Zbl 1061.65118
[2] Binev, P.; Cohen, A.; Dahmen, W.; DeVore, R.; Petrova, G.; Wojtaszczyk, P., Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal., 43, 3, 1457-1472 (2011) · Zbl 1229.65193
[3] Boyaval, S.; Le Bris, C.; Lelièvre, T.; Maday, Y.; Nguyen, N. C.; Patera, A. T., Reduced basis techniques for stochastic problems, Arch. Comput. Methods Eng., 17, 435-454 (2010) · Zbl 1269.65005
[4] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (2008), Springer Verlag · Zbl 1135.65042
[5] Buffa, A.; Maday, Y.; Patera, A. T.; Prud’homme, C.; Turinici, G., A priori convergence of the greedy algorithm for the parametrized reduced basis method, Modél. Math. Anal. Numér., 46, 03, 595-603 (2012) · Zbl 1272.65084
[6] Bui-Thanh, T.; Ghattas, O.; Martin, J.; Stadler, G., A computational framework for infinite-dimensional Bayesian inverse problems, part I: the linearized case, with application to global seismic inversion, SIAM J. Sci. Comput., 35, 6, A2494-A2523 (2013) · Zbl 1287.35087
[7] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Int. J. Numer. Methods Eng., 86, 2, 155-181 (2011) · Zbl 1235.74351
[8] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169
[9] Chen, P., Model order reduction techniques for uncertainty quantification problems (2014), EPFL, PhD thesis
[10] Chen, P.; Quarteroni, A., Accurate and efficient evaluation of failure probability for partial differential equations with random input data, Comput. Methods Appl. Mech. Eng., 267, 233-260 (2013) · Zbl 1286.65156
[11] Chen, P.; Quarteroni, A., Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraints, SIAM/ASA J. Uncertain. Quantificat., 2, 1, 364-396 (2014) · Zbl 1309.35182
[12] Chen, P.; Quarteroni, A., A new algorithm for high-dimensional uncertainty quantification based on dimension-adaptive sparse grid approximation and reduced basis methods, J. Comput. Phys., 298, 176-193 (2015) · Zbl 1349.65683
[13] Chen, P.; Quarteroni, A.; Rozza, G., A weighted reduced basis method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 51, 6, 3163-3185 (2013) · Zbl 1288.65007
[14] Chen, P.; Quarteroni, A.; Rozza, G., Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations, Numer. Math., 1-36 (2015)
[15] Chen, P.; Quarteroni, A.; Rozza, G., Reduced order methods for uncertainty quantification problems (2015), Seminar for Applied Mathematics, ETH: Seminar for Applied Mathematics, ETH Zürich, Switzerland, Technical report 2015-03
[16] Chen, P.; Schwab, Ch., Sparse-grid, reduced-basis Bayesian inversion, Comput. Methods Appl. Mech. Eng., 297, 84-115 (2015) · Zbl 1425.65020
[17] Chen, P.; Schwab, Ch., Adaptive sparse grid model order reduction for fast Bayesian estimation and inversion, (Garcke, J.; Pflüger, D., Sparse Grids and Applications. Sparse Grids and Applications, Stuttgart 2014 (2016), Springer)
[18] Chen, P.; Schwab, Ch., Model order reduction methods in computational uncertainty quantification, (Ghanem, R.; Higdon, D.; Owhadi, H., Handbook of Uncertainty Quantification (2016), Springer)
[19] Chkifa, A.; Cohen, A.; DeVore, R.; Schwab, Ch., Adaptive algorithms for sparse polynomial approximation of parametric and stochastic elliptic PDEs, ESAIM Math. Model. Numer. Anal., 47, 1, 253-280 (2013) · Zbl 1273.65009
[20] Chkifa, A.; Cohen, A.; Schwab, Ch., Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs, J. Math. Pures Appl., 103, 9, 400-428 (2015) · Zbl 1327.65251
[21] Ciesielski, Z.; Domsta, J., Construction of an orthonormal basis in \(C^m(I^d)\) and \(W_p^m(I^d)\), Stud. Math., 41, 211-224 (1972) · Zbl 0235.46047
[22] Cotter, S. L.; Dashti, M.; Stuart, A. M., Approximation of Bayesian inverse problems for PDEs, SIAM J. Numer. Anal., 48, 1, 322-345 (2010) · Zbl 1210.35284
[23] Cui, T.; Marzouk, Y. M.; Willcox, K. E., Data-driven model reduction for the Bayesian solution of inverse problems, Int. J. Numer. Methods Eng., 102, 5, 966-990 (2015) · Zbl 1352.65445
[24] Dashti, M.; Stuart, A. M., The Bayesian approach to inverse problems, (Ghanem, R.; Higdon, D.; Owhadi, H., Handbook of Uncertainty Quantification (2016), Springer)
[25] Deuflhard, P., Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, vol. 35 (2011), Springer Science & Business Media
[26] Dick, J.; Gantner, R.; Le Gia, Q.; Schwab, Ch., Higher order quasi-Monte Carlo integration for Bayesian estimation (2016), ETH: ETH Zürich, Switzerland, Technical report 2016-13, Seminar for Applied Mathematics
[27] Drohmann, M.; Haasdonk, B.; Ohlberger, M., Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34, 2, A937-A969 (2012) · Zbl 1259.65133
[28] Elman, H.; Liao, Q., Reduced basis collocation methods for partial differential equations with random coefficients, SIAM/ASA J. Uncertain. Quantificat., 1, 1, 192-217 (2013) · Zbl 1282.35424
[29] Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, vol. 1 (2010), Springer Science & Business: Springer Science & Business Media
[30] Galbally, D.; Fidkowski, K.; Willcox, K. E.; Ghattas, O., Non-linear model reduction for uncertainty quantification in large-scale inverse problems, Int. J. Numer. Methods Eng., 81, 12, 1581-1608 (2010) · Zbl 1183.76837
[31] Gerstner, T.; Griebel, M., Dimension-adaptive tensor-product quadrature, Computing, 71, 1, 65-87 (2003) · Zbl 1030.65015
[32] Grepl, M. A.; Maday, Y.; Nguyen, N. C.; Patera, A. T., Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, Modél. Math. Anal. Numér., 41, 03, 575-605 (2007) · Zbl 1142.65078
[33] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations (2015), Springer
[34] Hoang, V. H.; Schwab, Ch.; Stuart, A., Complexity analysis of accelerated MCMC methods for Bayesian inversion, Inverse Probl., 29, 8 (2013) · Zbl 1288.65004
[35] Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G., A reduced computational and geometrical framework for inverse problems in hemodynamics, Int. J. Numer. Methods Biomed. Eng., 29, 7, 741-776 (2013)
[36] Lieberman, C.; Willcox, K.; Ghattas, O., Parameter and state model reduction for large-scale statistical inverse problems, SIAM J. Sci. Comput., 32, 5, 2523-2542 (2010) · Zbl 1217.65123
[37] Ma, X.; Zabaras, N., An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228, 8, 3084-3113 (2009) · Zbl 1161.65006
[38] Maday, Y.; Mula, O.; Patera, A. T.; Yano, M., The generalized empirical interpolation method: stability theory on Hilbert spaces with an application to the Stokes equation, Comput. Methods Appl. Mech. Eng., 287, 310-334 (2015) · Zbl 1423.76346
[39] Maday, Y.; Nguyen, N. C.; Patera, A. T.; Pau, G. S.H., A general, multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Anal., 8, 1, 383-404 (2009) · Zbl 1184.65020
[40] Martin, J.; Wilcox, L. C.; Burstedde, C.; Ghattas, O., A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion, SIAM J. Sci. Comput., 34, 3, A1460-A1487 (2012) · Zbl 1250.65011
[41] Marzouk, Y. M.; Najm, H. N.; Rahn, L. A., Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224, 2, 560-586 (2007) · Zbl 1120.65306
[42] Nguyen, N. C.; Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; application to real-time Bayesian parameter estimation, (Biegler; Biros; Ghattas; Heinkenschloss; Keyes; Mallick; Tenorio; van Bloemen Waanders; Willcox, Computational Methods for Large Scale Inverse Problems and Uncertainty Quantification (2009), John Wiley & Sons: John Wiley & Sons UK)
[43] Pousin, J.; Rappaz, J., Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems, Numer. Math., 69, 2, 213-231 (1994) · Zbl 0822.65034
[44] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations: An Introduction, vol. 92 (2015), Springer
[45] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15, 3, 229-275 (2008) · Zbl 1304.65251
[46] Rozza, G.; Veroy, K., On the stability of the reduced basis method for Stokes equations in parametrized domains, Comput. Methods Appl. Mech. Eng., 196, 7, 1244-1260 (2007) · Zbl 1173.76352
[47] Schillings, C., A note on sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Oberwolfach Rep., 10, 1, 239-293 (2013)
[48] Schillings, C.; Schwab, Ch., Sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Inverse Probl., 29, 6, Article 065011 pp. (2013) · Zbl 1278.65008
[49] Schillings, C.; Schwab, Ch., Sparsity in Bayesian inversion of parametric operator equations, Inverse Probl., 30, 6, Article 065007 pp. (2014) · Zbl 1291.65033
[50] Schwab, Ch.; Gittelson, C., Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numer., 20, 291-467 (2011) · Zbl 1269.65010
[51] Schwab, Ch.; Stuart, A. M., Sparse deterministic approximation of Bayesian inverse problems, Inverse Probl., 28, 4, Article 045003 pp. (2012) · Zbl 1236.62014
[52] Stuart, A. M., Inverse problems: a Bayesian perspective, Acta Numer., 19, 1, 451-559 (2010) · Zbl 1242.65142
[53] Wolfe, P., Convergence conditions for ascent methods, SIAM Rev., 11, 2, 226-235 (1969) · Zbl 0177.20603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.