×

Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations. (English) Zbl 1349.76769

Summary: This paper is concerned with the construction of a fast algorithm for computing the maximum speed of propagation in the Riemann solution for the Euler system of gas dynamics with the co-volume equation of state. The novelty in the algorithm is that it stops when a guaranteed upper bound for the maximum speed is reached with a prescribed accuracy. The convergence rate of the algorithm is cubic and the bound is guaranteed for gasses with the co-volume equation of state and the heat capacity ratio \(\gamma\) in the range \((1, 5 / 3]\).

MSC:

76N15 Gas dynamics (general theory)

Software:

HLLE
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baibuz, V.; Zitserman, V.; Golubushkin, L.; Malyshev, I., The covolume and equation of state of high-temperature real gases, J. Eng. Phys., 51, 2, 955-956 (1986)
[2] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLLC Riemann solver for unstructured meshes—with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208 (2014) · Zbl 1349.76426
[3] Bouchut, F.; Morales de Luna, T., Semi-discrete entropy satisfying approximate Riemann solvers. The case of the Suliciu relaxation approximation, J. Sci. Comput., 41, 3, 483-509 (2009) · Zbl 1203.65130
[4] Bressan, A., Hyperbolic Systems of Conservation Laws, Oxford Lecture Ser. Math. Appl., vol. 20 (2000), Oxford University Press: Oxford University Press Oxford, The one-dimensional Cauchy problem · Zbl 0987.35105
[5] Castro, M. J.; Gallardo, J. M.; Marquina, A., A class of incomplete Riemann solvers based on uniform rational approximations to the absolute value function, J. Sci. Comput., 60, 2, 363-389 (2014) · Zbl 1299.76181
[6] Chorin, A. J., Random choice solution of hyperbolic systems, J. Comput. Phys., 22, 4, 517-533 (1976) · Zbl 0354.65047
[7] Chueh, K. N.; Conley, C. C.; Smoller, J. A., Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26, 2, 373-392 (1977) · Zbl 0368.35040
[8] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., 87, 1, 171-200 (1990) · Zbl 0694.65041
[9] Frid, H., Maps of convex sets and invariant regions for finite-difference systems of conservation laws, Arch. Ration. Mech. Anal., 160, 3, 245-269 (2001) · Zbl 0993.65096
[10] Godlewski, E.; Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sci., vol. 118 (1996), Springer-Verlag: Springer-Verlag New York · Zbl 1063.65080
[11] Guermond, J.-L.; Popov, B., Invariant domains and first-order continuous finite element approximation for hyperbolic systems, SIAM J. Numer. Anal. (2015), in press
[12] Guermond, J.-L.; Popov, B.; Saavedra, L.; Yang, Y., Invariant domains preserving ale approximation of hyperbolic systems with continuous finite elements, SIAM J. Numer. Anal. (2016), in review
[13] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051
[14] Hoff, D., Invariant regions for systems of conservation laws, Trans. Am. Math. Soc., 289, 2, 591-610 (1985) · Zbl 0535.35056
[16] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160, 1, 241-282 (2000) · Zbl 0987.65085
[17] Kurganov, A.; Noelle, S.; Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23, 3, 707-740 (2001), (electronic) · Zbl 0998.65091
[18] Lax, P. D., Hyperbolic systems of conservation laws. II, Commun. Pure Appl. Math., 10, 537-566 (1957) · Zbl 0081.08803
[19] Rusanov, V., The calculation of the interaction of non-stationary shock waves and obstacles, USSR Comput. Math. Math. Phys., 1, 2, 304-320 (1962)
[20] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer-Verlag: Springer-Verlag Berlin, A practical introduction · Zbl 1227.76006
[21] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165 (2006) · Zbl 1087.65590
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.