×

FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions. (English) Zbl 1351.81078

Summary: The goal of this paper is to present a new major release of the program FIESTA (Feynman Integral Evaluation by a Sector decomposiTion Approach). This version presents features like cluster-parallelization, new asymptotic expansion algorithms, calculations in physical regions, new sector-decomposition strategies, as well as multiple speed, memory, and stability improvements.

MSC:

81T18 Feynman diagrams
81-04 Software, source code, etc. for problems pertaining to quantum theory
65D30 Numerical integration

Software:

FIESTA; FIESTA 3; Cuba; SecDec
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multi-loop integrals, Nuclear Phys., B585, 741-759 (2000) · Zbl 1042.81565
[2] Binoth, T.; Heinrich, G., Numerical evaluation of multi-loop integrals by sector decomposition, Nuclear Phys., B680, 375-388 (2004) · Zbl 1043.81630
[3] Binoth, T.; Heinrich, G., Numerical evaluation of phase space integrals by sector decomposition, Nuclear Phys., B693, 134-148 (2004) · Zbl 1151.81352
[4] Heinrich, G., Sector decomposition, Internat. J. Modern Phys., A23, 1457-1486 (2008) · Zbl 1153.81522
[5] Bogner, C.; Weinzierl, S., Resolution of singularities for multi-loop integrals, Comput. Phys. Commun., 178, 596-610 (2008) · Zbl 1196.81010
[6] Bogner, C.; Weinzierl, S., Blowing up Feynman integrals, Nucl. Phys. Proc. Suppl., 183, 256-261 (2008)
[7] Smirnov, V. A., Analytic tools for Feynman integrals, Springer Tracts Modern Phys., 250, 1-296 (2012) · Zbl 1268.81004
[8] Carter, J.; Heinrich, G., SecDec: a general program for sector decomposition, Comput. Phys. Commun., 182, 1566-1581 (2011) · Zbl 1262.81119
[9] Borowka, S.; Carter, J.; Heinrich, G., Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0, Comput. Phys. Commun., 184, 396-408 (2013)
[10] Borowka, S.; Carter, J.; Heinrich, G., SecDec: a tool for numerical multi-loop calculations, J. Phys. Conf. Ser., 368, 012051 (2012)
[11] Borowka, S.; Heinrich, G., Numerical evaluation of massive multi-loop integrals with SecDec, PoS, LL2012, 038 (2012)
[12] Borowka, S.; Heinrich, G., Massive non-planar two-loop four-point integrals with SecDec 2.1, Comput. Phys. Commun., 184, 2552-2561 (2013) · Zbl 1349.81012
[14] Smirnov, A. V.; Tentyukov, M. N., Feynman integral evaluation by a sector decomposition approach (FIESTA), Comput. Phys. Commun., 180, 735-746 (2009) · Zbl 1198.81044
[15] Smirnov, A. V.; Smirnov, V. A.; Tentyukov, M., FIESTA 2: parallelizeable multiloop numerical calculations, Comput. Phys. Commun., 182, 790-803 (2011) · Zbl 1214.81171
[16] Soper, D. E., Techniques for QCD calculations by numerical integration, Phys. Rev., D62, 014009 (2000)
[17] Kurihara, Y.; Kaneko, T., Numerical contour integration for loop integrals, Comput. Phys. Commun., 174, 530-539 (2006) · Zbl 1196.81066
[18] Binoth, T.; Guillet, J. P.; Heinrich, G.; Pilon, E.; Schubert, C., An Algebraic/numerical formalism for one-loop multi-leg amplitudes, J. High Energy Phys., 0510, 015 (2005)
[19] Nagy, Z.; Soper, D. E., Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev., D74, 093006 (2006)
[20] Anastasiou, C.; Beerli, S.; Daleo, A., Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically, J. High Energy Phys., 0705, 071 (2007)
[21] Chetyrkin, K. G.; Tkachov, F. V., Integration by parts: the algorithm to calculate beta functions in 4 loops, Nuclear Phys., B192, 159-204 (1981)
[22] Pak, A.; Smirnov, A. V., Geometric approach to asymptotic expansion of Feynman integrals, Eur. Phys. J., C71, 1626 (2011)
[23] Jantzen, B.; Smirnov, A. V.; Smirnov, V. A., Expansion by regions: revealing potential and Glauber regions automatically, Eur. Phys. J., C72, 2139 (2012)
[24] Beneke, M.; Smirnov, V. A., Asymptotic expansion of Feynman integrals near threshold, Nuclear Phys., B522, 321-344 (1998)
[25] Smirnov, V. A., Problems of the strategy of regions, Phys. Lett., B465, 226-234 (1999)
[27] Smirnov, A. V.; Smirnov, V. A., Hepp and Speer sectors within modern strategies of sector decomposition, J. High Energy Phys., 05, 004 (2009)
[28] Kaneko, T.; Ueda, T., A geometric method of sector decomposition, Comput. Phys. Commun., 181, 1352-1361 (2010) · Zbl 1219.65014
[29] Hahn, T., CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun., 168, 78-95 (2005) · Zbl 1196.65052
[30] Sadovnichy, V.; Tikhonravov, A.; Voevodin, V.; Opanasenko, V., “Lomonosov”: supercomputing at Moscow state university, (Contemporary High Performance Computing: From Petascale toward Exascale (2013), Chapman & Hall/CRC Computational Science: Chapman & Hall/CRC Computational Science Boca Raton, United States), 283-307
[31] Pilipp, V., Semi-numerical power expansion of Feynman integrals, J. High Energy Phys., 09, 135 (2008) · Zbl 1245.81032
[32] Smirnov, V. A., Analytical result for dimensionally regularized massless on-shell double box, Phys. Lett., B460, 397-404 (1999)
[33] Tausk, J. B., Non-planar massless two-loop Feynman diagrams with four on-shell legs, Phys. Lett., B469, 225-234 (1999) · Zbl 0987.81500
[34] Lee, R., Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys., B830, 474-492 (2010) · Zbl 1203.83051
[35] Lee, R. N.; Smirnov, A. V.; Smirnov, V. A., Analytic results for Massless three-loop form factors, J. High Energy Phys., 04, 020 (2010) · Zbl 1272.81196
[36] Lee, R. N.; Smirnov, A. V.; Smirnov, V. A., Master integrals for Four-Loop Massless propagators up to transcendentality weight twelve, Nuclear Phys., B856, 95-110 (2012) · Zbl 1246.81057
[37] Lee, R. N.; Smirnov, V. A., The dimensional recurrence and analyticity method for multicomponent master integrals: using unitarity cuts to construct homogeneous solutions, J. High Energy Phys., 1212, 104 (2012) · Zbl 1397.81073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.