×

RBF-vortex methods for the barotropic vorticity equation on a sphere. (English) Zbl 1351.86009

Summary: Vortex blob methods approximate a flow as a sum of many small vortices of Gaussian shape, and adaptively move the vortex centers with the current. Gaussian radial basis functions (RBFs) do exactly the same. However, RBFs solve an exact interpolation problem – expensive but accurate – while vortex methods sacrifice accuracy through quasi-interpolation for the absence of a matrix inversion. We show that vortex-RBF algorithms with spectral accuracy are stable for flows on the sphere. The version in Eulerian coordinates is fast; the fully-Lagrangian variant is much slower for a given basis size \(N\), but is highly adaptive for advection-dominated flows. Both versions are excellent for small-to-medium-\(N\) problems – \(N\) up to 10,000, say, where \(N\) is the number of RBF grid points/vortex blobs. Neither is good for large \(N\) problems because the cost of the Eulerian model scales as \(N^2\) per timestep while the Lagrangian vortex-RBF method scales as \(N^3\). The slow-Lagrangian scheme is unique among vortex methods in being genuinely (like its Eulerian sibling) a spectrally-accurate method: for laminar flows the error falls exponentially fast with \(N\).

MSC:

86-08 Computational methods for problems pertaining to geophysics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics

Software:

PetRBF; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barba, L. A.; Rossi, L. F., Global field interpolation for particle methods, J. Comput. Phys., 229, 1292-1310 (2010) · Zbl 1329.76282
[2] Barba, L. A.; Yokota, R., How will the fast multipole method fare in the exascale era?, SIAM Newsl., 73, 1-2 (2013)
[3] Barrett, E. W., Eccentric circumpolar vortices in a barotropic atmosphere, Tellus, 10, 395-400 (1958)
[4] Beale, J.; Majda, A., Vortex methods. II. Higher order accuracy in two or three dimensions, Math. Comput., 39, 29-52 (1982) · Zbl 0488.76025
[5] Beale, J. T., On the accuracy of vortex methods at large times, (Engquist, B.; etal., Computational Fluid Dynamics and Reacting Gas Flows (1988), Springer-Verlag: Springer-Verlag New York), 19-32, Also a (1987) technical report from the Institute for Mathematics and its Applications, University of Minnesota
[6] Bellman, R. E.; Kashef, B. G.; Casti, J., Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10, 40-52 (1972) · Zbl 0247.65061
[7] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3-47 (1996) · Zbl 0891.73075
[8] Bogomolov, V. A., On the motion of a vortex on a rotating sphere, Izvestiya, 21, 298-302 (1985)
[9] Bollig, E. F.; Flyer, N.; Erlebacher, G., Solution to PDEs using radial basis function finte-differences (RBF-FD) on multiple GPUs, J. Comput. Phys., 231, 7133-7151 (2012)
[10] Boyd, J. P., Weakly Nonlocal Solitary Waves and Beyond-all-Orders Asymptotics: Generalized Solitons and Hyperasymptotic Perturbation Theory, Math. Appl., vol. 442 (1998), Kluwer: Kluwer Amsterdam, 608 pp · Zbl 0905.76001
[11] Boyd, J. P., The devil’s invention: asymptotic superasymptotics and hyperasymptotics, Acta Appl., 56, 1-98 (1999)
[12] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover: Dover Mineola, New York, 665 pp · Zbl 0987.65122
[13] Boyd, J. P., Hyperasymptotics and the linear boundary layer problem: why asymptotic series diverge, SIAM Rev., 47, 553-575 (2005) · Zbl 1087.34032
[14] Boyd, J. P., Limited-area Fourier spectral models and data analysis schemes: windows, Fourier extension, Davies relaxation and all that, Mon. Weather Rev., 133, 2030-2042 (2005)
[15] Boyd, J. P., The uselessness of the fast Gauss transform for summing Gaussian radial basis functions series, J. Comput. Phys., 229, 1311-1326 (2009) · Zbl 1180.65185
[16] Boyd, J. P.; Sanjaya, E., Geometrical effects on western intensification of wind-driven ocean currents: the rotated-channel Stommel model, coastal orientation, and curvature, Dyn. Atmos. Ocean., 65, 17-38 (2014)
[17] Boyd, J. P.; Zhou, C., Three ways to solve the Poisson equation on a sphere with Gaussian forcing, J. Comput. Phys., 228, 4702-4713 (2009) · Zbl 1173.65068
[18] Buhmann, M. D., Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12 (2003), Cambridge University Press · Zbl 1038.41001
[19] Cavoretto, R.; Rossi, A. D., Spherical interpolation using the partition of unity method: an efficient and flexible algorithm, Appl. Math. Lett., 26, 1251-1256 (2012) · Zbl 1251.65008
[20] Charney, J. G.; Fjörtoft, R.; von Neumann, J., Numerical integration of the barotropic vorticity equation, Tellus, 2, 237-254 (1950)
[21] Chorin, A. J., Numerical study of slightly viscous flow, J. Fluid Mech., 57, 785-796 (1973)
[22] Chorin, A. J.; Bernard, P. S., Discretization of a vortex sheet, with an example of roll-up, J. Comput. Phys., 423-428 (1973) · Zbl 0273.76022
[23] Cottet, G.-H.; Koumoutsakos, P. D., Vortex Methods Theory and Practice (2000), Cambridge University Press: Cambridge University Press Cambridge
[24] Degrauwe, D.; Caluwaerts, S.; Voitus, F.; Hamdi, R.; Termonia, P., Application of Boyd’s periodization and relaxation method in a spectral atmospheric limited-area model. Part II. Accuracy analysis and detailed study of operational impact, Mon. Weather Rev., 140, 3149-3162 (2012)
[25] DeMaria, M., Tropical cyclone motion in a nondivergent barotropic model, Mon. Weather Rev., 113, 1199-1210 (1985)
[26] Dibattista, M.; Polvani, L., Barotropic vortex pairs on a rotating sphere, J. Fluid Mech., 358, 107-133 (1998) · Zbl 0908.76096
[27] Fasshauer, G. F., Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences (2007), World Scientific Publishing Company: World Scientific Publishing Company Singapore · Zbl 1123.65001
[28] Flyer, N.; Fornberg, B., Radial basis functions: developments and applications to planetary scale flows, Comput. Fluids, 46, 23-32 (2011) · Zbl 1272.65078
[29] Flyer, N.; Lehto, E., Rotational transport on a sphere: local node refinement with radial basis functions, J. Comput. Phys., 229, 1954-1969 (2010) · Zbl 1303.76128
[30] Flyer, N.; Lehto, E.; Blaise, S.; Wright, G. B.; St-Cyr, A., A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere, J. Comput. Phys., 231, 4078-4095 (2012) · Zbl 1394.76078
[31] Flyer, N.; Wright, G. B., Transport schemes on a sphere using radial basis functions, J. Comput. Phys., 226, 1059-1084 (2007) · Zbl 1124.65097
[32] Fornberg, B.; Lehto, E., Stabilization of RBF-generated finite difference methods for convective PDEs, J. Comput. Phys., 230, 2270-2285 (2011) · Zbl 1210.65154
[33] Fornberg, B.; Lehto, E.; Powell, C., Stable calculation of Gaussian-based RBF-FD stencils, Comput. Math. Appl., 65, 627-637 (2013) · Zbl 1319.65011
[34] Friedlander, S., Interactions of vortices in a fluid on a surface of a rotating sphere, Tellus, 27, 1 (1975)
[35] Fuselier, E.; Hangelbroek, T.; Narcowich, F.; Ward, J.; Wright, G., Localized bases for kernel spaces on the unit sphere, SIAM J. Numer. Anal., 51, 2538-2562 (2013) · Zbl 1284.41002
[36] Fuselier, E.; Hangelbroek, T.; Narcowich, F.; Ward, J.; Wright, G., Kernel based quadrature on spheres and other homogeneous spaces, Numer. Math., 127, 57-92 (2014) · Zbl 1302.65065
[37] Fuselier, E. J.; Wright, G. B., Stability and error estimates for vector field interpolation and decomposition on the sphere with RBFs, SINUM J. Numer. Anal., 47, 3213-3239 (2009) · Zbl 1203.41002
[38] Gates, W. L.; Riegel, C. A., Study of numerical errors in integration of barotropic flow on a spherical grid, J. Geophys. Res., 67, 773 (1962) · Zbl 0122.23906
[39] Gravel, S.; Staniforth, A., Variable resolution and robustness, Mon. Weather Rev., 120, 2633-2640 (1992)
[40] Gryanik, V. M., Localized vortices in the equatorial atmosphere: structure and dynamics, Izv., Atmos. Ocean. Phys., 24, 13-19 (1988)
[41] Hogg, N. G.; Stommel, H. M., The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 397, 1-20 (1985) · Zbl 0571.76017
[42] Iske, A., Multiresolution Methods in Scattered Data Modelling, Lecture Notes in Computational Science and Engineering, vol. 37 (2004), Springer: Springer Heidelberg · Zbl 1057.65004
[43] Jamaloodeen, M. I.; Newton, P. K., The \(N\)-vortex problem on a rotating sphere. II. Heterogeneous platonic solid equilibria, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 462, 3277-3299 (2007) · Zbl 1149.76615
[44] Kansa, E. J., A comparative study of finite difference and multiquadric schemes for the Euler equations, Simulation, 51, 180-183 (1988) · Zbl 0729.65066
[45] Kidambi, R.; Newton, P. K., Streamline topologies for integrable vortex motion on a sphere, Physica D, 140, 95-125 (1998) · Zbl 0971.76017
[46] Kimura, Y., Vortex motion on surfaces with constant curvature, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 455, 245-259 (1987) · Zbl 0966.53046
[47] Kimura, Y.; Okamoto, H., Vortex on a sphere, J. Phys. Soc. Jpn., 56, 4203-4206 (1987)
[48] Klyatskin, K. V.; Reznik, G. M., Point vortices on a rotating sphere, Oceanology, 29, 12-16 (1989)
[49] Krasny, R., Desingularization of periodic vortex sheet roll-up, J. Comput. Phys., 65, 292-313 (1986) · Zbl 0591.76059
[50] Krasny, R.; Wang, L., Fast evaluation of multiquadric RBF sums by a Cartesian treecode, SIAM J. Sci. Comput., 33, 2341-2355 (2011) · Zbl 1232.65006
[51] Laurent-Polz, F., Point vortices on a rotating sphere, Regul. Chaotic Dyn., 10, 39-58 (2005) · Zbl 1120.76012
[52] Levy, M. N.; Nair, R. D.; Tufo, H. A., A high-order element-based Galerkin method for the barotropic vorticity equation, Int. J. Numer. Methods Fluids, 59, 1369-1387 (2009) · Zbl 1161.76031
[53] Ling, L. V.; Kansa, E. J., A least-squares preconditioner for radial basis functions collocation methods, Adv. Comput. Math., 23, 31-54 (2005) · Zbl 1067.65136
[54] Magoules, F.; Diago, L. A.; Hagiwara, I., A two-level iterative method for image reconstruction with radial basis functions, JSME Int. J., Ser. C, Mech. Syst. Mach. Elem. Manuf., 48, 149-158 (2005)
[55] Maz’ya, V.; Schmidt, G., Approximate Approximations (2007), American Mathematical Society: American Mathematical Society Providence, 349 pp · Zbl 1119.41015
[56] McWilliams, J. C.; Zabusky, N. J., Interactions of isolated vortices. 1. Modons colliding with modons, Geophys. Astrophys. Fluid Dyn., 19, 207-227 (1982) · Zbl 0483.76030
[57] Flyer, Natasha; Wright, G. B., A radial basis function method for the shallow water equations on a sphere, Proc. R. Soc. A, 465, 1949-1976 (2009) · Zbl 1186.76664
[58] Newton, P. K.; Shokraneh, H., Interacting dipole pairs on a rotating sphere, Proc. R. Soc. London A, 464, 1525-1541 (2008)
[59] Ohtake, Y.; Belyaev, A.; Seidel, H., Sparse surface reconstruction with adaptive partition of unity and radial basis functions, Graph. Models, 68, 15-24 (2006) · Zbl 1103.68924
[60] Reznik, G. M.; Kizner, Z., Two-layer quasi-geostrophic singular vortices embedded in a regular flow. Part 1. Invariants of motion and stability of vortex pairs, J. Fluid Mech., 584, 185-202 (2007) · Zbl 1118.76070
[61] Rosenhead, L., The formation of vortices from a surface of discontinuity, Proc. R. Soc. London A, 134, 170-192 (1931) · Zbl 0003.08401
[62] Sadourny, R.; Arakawa, A.; Mintz, Y., Integration of the nondivergent barotropic equation with an icosahedral hexagonal grid for the sphere, Mon. Weather Rev., 96, 351-356 (1968)
[63] Sakajo, T., Non-self-similar, partial, and robust collapse of four point vortices on a sphere, Phys. Rev. E, 78, 016312 (2008)
[64] Schaback, R., Multivariate interpolation by polynomials and radial basis functions, Constr. Approx., 21, 293-317 (2005) · Zbl 1076.41003
[65] Shin, S.-E.; Han, J.-Y.; Baik, J.-J., On the critical separation distance of binary vortices in a nondivergent barotropic atmosphere, J. Meteorol. Soc. Jpn., 84, 853-869 (2006)
[66] Stuhne, G. R.; Peltier, W. R., New icosahedral grid-point discretization of the shallow water equations on the sphere, J. Comput. Phys., 128, 58-81 (1996) · Zbl 0861.76045
[67] Termonia, P.; Voitus, F.; Degrauwe, D.; Caluwaerts, S.; Hamdi, R., Application of Boyd’s periodization and relaxation method in a spectral atmospheric limited-area model. Part I. Implementation and reproducibility tests, Mon. Weather Rev., 140, 3137-3148 (2012)
[68] Tobor, I.; Reuter, P.; Schlick, C., Reconstructing multi-scale variational partition of unity implicit surfaces with attributes, Graph. Models, 68, 25-41 (2006) · Zbl 1103.68949
[69] Torres, C. E.; Barba, L. A., Fast radial basis function interpolation with Gaussians by localization and iteration, J. Comput. Phys., 228, 4976-4999 (2009) · Zbl 1168.65318
[70] Tribbia, J. J., Modons in spherical geometry, Geophys. Astrophys. Fluid Dyn., 30, 131-168 (1984)
[71] Verkley, W. T.M., The construction of barotropic modons on a sphere, J. Atmos. Sci., 41, 2492-2504 (1984)
[72] Vestine, E. H.; Sibley, W. L.; Kern, J. W.; Carlstedt, J. L., Integral and spherical-harmonic analyses of the geomagnetic field for 1955.0, part 2, J. Geomagn. Geoelectr., 15, 73-89 (1963)
[73] Wang, L., Radial basis functions and vortex methods and their application to vortex dynamics on a rotating sphere (2010), University of Michigan, Applied and Interdisciplinary Mathematics, Department of Mathematics, PhD dissertation
[74] Wendland, H., Fast evaluation of radial basis functions: methods based on partition of unity, (Chui, C. K.; Schumaker, L. L.; Stoeckler, J., Approximation Theory X: Wavelets, Splines and Applications (2002), Vanderbilt University Press: Vanderbilt University Press Nashville), 473-483 · Zbl 1031.65022
[75] Wendland, H., Scattered Data Approximation (2005), Cambridge University Press · Zbl 1075.65021
[76] Williamson, D. L., Integration of the barotropic vorticity equation on a spherical geodesic grid, Tellus, 20, 642-653 (1968)
[77] Wong, S. M.; Hon, Y. C.; Golberg, M. A., Compactly supported radial basis functions for shallow water equations, Appl. Math. Comput., 127, 79-101 (2002) · Zbl 1126.76352
[78] Wright, G. B.; Flyer, N.; Yuen, D. A., A hybrid radial basis function-pseudospectral method for thermal convection in a 3-d spherical shell, Geochem. Geophys. Geosyst., 11, Q07003 (2010)
[79] Xiao, J., An analysis of periodized RBF interpolation with Tikhonov regularization, J. Comput. Phys. (2014), submitted for publication
[80] Xiao, J., Periodized radial basis functions and RBF-vortex method for barotropic vorticity equation (April 2014), University of Michigan, Department of Atmospheric, Oceanic and Space Science, PhD dissertation
[81] Yokota, R.; Barba, L. A., A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems, Int. J. High Perform. Comput. Appl., 26, 337-346 (2012)
[82] Yokota, R.; Barba, L. A.; Knepley, M. J., PetRBF - a parallel \(o(n)\) algorithm for radial basis function interpolation, Comput. Methods Appl. Mech. Eng., 199, 1793-1804 (2010) · Zbl 1231.65026
[83] Zong, Z.; Zhang, Y., Advanced Differential Quadrature Methods (2009), CRC Press: CRC Press Boca Raton · Zbl 1178.65125
[84] Zukas, J. A.; Scheffler, D. R., Practical aspects of numerical simulations of dynamics events: effects of meshing, Int. J. Impact Eng., 24, 925-945 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.