×

A normalized representation of super splines of arbitrary degree on Powell-Sabin triangulations. (English) Zbl 1365.41007

The paper proposes a family of spline spaces of arbitrary degree \(d\) on Powell-Sabin triangulations, which extends the class of super spline spaces of arbitrary smoothness \(r\) and degree \(d=3r-1\) introduced by H. Speleers [Constr. Approx. 37, No. 1, 41–72 (2013; Zbl 1264.41014)]. The new types of spline spaces studied in the paper are of degree \(d=3r-2\) and \(d=3r\) with global smoothness \(r-1\) and \(r\), respectively, and possess some additional super smoothness across certain edges of the Powell-Sabin partition. The paper also details the construction of normalized bases for the proposed family of spaces. It is proved that the resulting B-spline functions have local supports, are nonnegative, and form a partition of unity, which may serve as useful properties in future applications.

MSC:

41A15 Spline approximation
41A05 Interpolation in approximation theory
65D07 Numerical computation using splines
65D17 Computer-aided design (modeling of curves and surfaces)

Citations:

Zbl 1264.41014

Software:

FITPACK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alfeld, P., Schumaker, L.L.: Smooth macro-elements based on Powell-Sabin triangle splits. Adv. Comput. Math. 16, 29-46 (2002) · Zbl 0993.65124
[2] Chen, S.K., Liu, H.W.: A bivariate \[{{C}}^1\] C1 cubic super spline space on Powell-Sabin triangulation. Comput. Math. Appl. 56, 1395-1401 (2008) · Zbl 1155.65310
[3] Dierckx, P.: On calculating normalized Powell-Sabin B-splines. Comput. Aided Geom. Des. 15, 61-78 (1997) · Zbl 0894.68152
[4] Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann Publishers, San Francisco (2002)
[5] Grošelj, J., Krajnc, M.: \[{{C}}^1\] C1 cubic splines on Powell-Sabin triangulations. Appl. Math. Comput. 272, Part 1, 114-126 (2016) · Zbl 1410.65030
[6] Lai, M.J.: On \[{{C}}^2\] C2 quintic spline functions over triangulations of Powell-Sabin’s type. J. Comput. Appl. Math. 73, 135-155 (1996) · Zbl 0866.65007
[7] Lai, M.J., Schumaker, L.L.: Macro-elements and stable local bases for splines on Powell-Sabin triangulations. Math. Comput. 72, 335-354 (2003) · Zbl 1009.41007
[8] Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2007) · Zbl 1185.41001
[9] Lamnii, A., Lamnii, M., Mraoui, H.: Cubic spline quasi-interpolants on Powell-Sabin partitions. BIT Numer Math 54, 1099-1118 (2014) · Zbl 1308.41010
[10] Lamnii, M., Mraoui, H., Tijini, A., Zidna, A.: A normalized basis for \[{{C}}^1\] C1 cubic super spline space on Powell-Sabin triangulation. Math. Comput. Simul. 99, 108-124 (2014) · Zbl 07312584
[11] Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell-Sabin partitions. Adv. Comput. Math. 26, 283-304 (2007) · Zbl 1116.65008
[12] Neamtu, M.; Lyche, T. (ed.); Schumaker, LL (ed.), What is the natural generalization of univariate splines to higher dimensions?, 355-392 (2001), Saint-Malo · Zbl 0988.41004
[13] Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM T. Math. Softw. 3, 316-325 (1977) · Zbl 0375.41010
[14] Ramshaw, L.: Blossoming: a connect-the-dots approach to splines. Tech. Rep. 19 (1987) Digital Systems Research Center
[15] Seidel, H.: An introduction to polar forms. IEEE Comput. Graph. Appl. 13, 38-46 (1993)
[16] Speleers, H.: A normalized basis for quintic Powell-Sabin splines. Comput. Aided Geom. Design 27, 438-457 (2010) · Zbl 1210.65027
[17] Speleers, H.: Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations. Constr. Approx. 37, 41-72 (2013) · Zbl 1264.41014
[18] Speleers, H.: A family of smooth quasi-interpolants defined over Powell-Sabin triangulations. Constr. Approx. 41, 297-324 (2015) · Zbl 1318.41007
[19] Speleers, H.: A new B-spline representation for cubic splines over Powell-Sabin triangulations. Comput. Aided Geom. Des. 37, 42-56 (2015) · Zbl 1417.65070
[20] Speleers, H., Dierckx, P., Vandewalle, S.: Local subdivision of Powell-Sabin splines. Comput. Aided Geom. Des. 23, 446-462 (2006) · Zbl 1093.65011
[21] Speleers, H., Dierckx, P., Vandewalle, S.: Numerical solution of partial differential equations with Powell-Sabin splines. J. Comput. Appl. Math. 189, 643-659 (2006) · Zbl 1086.65114
[22] Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell-Sabin B-splines. Comput. Aided Geom. Des. 26, 174-191 (2009) · Zbl 1205.65056
[23] Vanraes, E., Windmolders, J., Bultheel, A., Dierckx, P.: Automatic construction of control triangles for subdivided Powell-Sabin splines. Comput. Aided Geom. Des. 21, 671-682 (2004) · Zbl 1069.41508
[24] Windmolders, J.; Dierckx, P.; Cohen, A. (ed.); Rabut, C. (ed.); Schumaker, L. (ed.), From PS-splines to NURPS, 45-54 (2000), Saint-Malo
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.