×

On noisy extensions of nonholonomic constraints. (English) Zbl 1378.70013

Summary: We propose several stochastic extensions of nonholonomic constraints for mechanical systems and study the effects on the dynamics and on the conservation laws. Our approach relies on a stochastic extension of the Lagrange-d’Alembert framework. The mechanical system we focus on is the example of a Routh sphere, i.e., a rolling unbalanced ball on the plane. We interpret the noise in the constraint as either a stochastic motion of the plane, random slip or roughness of the surface. Without the noise, this system possesses three integrals of motion: energy, Jellet and Routh. Depending on the nature of noise in the constraint, we show that either energy, or Jellet, or both integrals can be conserved, with probability 1. We also present some exact solutions for particular types of motion in terms of stochastic integrals. Next, for an arbitrary nonholonomic system, we consider two different ways of including stochasticity in the constraints. We show that when the noise preserves the linearity of the constraints, then energy is preserved. For other types of noise in the constraint, e.g., in the case of an affine noise, the energy is not conserved. We study in detail a class of Lagrangian mechanical systems on semidirect products of Lie groups, with “rolling ball type” constraints. We conclude with numerical simulations illustrating our theories, and some pedagogical examples of noise in constraints for other nonholonomic systems popular in the literature, such as the nonholonomic particle, the rolling disk and the Chaplygin sleigh.

MSC:

70F25 Nonholonomic systems related to the dynamics of a system of particles
37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)
70E18 Motion of a rigid body in contact with a solid surface
70G75 Variational methods for problems in mechanics
70L05 Random vibrations in mechanics of particles and systems

Software:

DLMF; SDELab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 2nd edn. Springer, Berlin/Heidelberg/New York (1997) · Zbl 0885.70001
[2] Bates, L., Sniatycki, J.: Non-holonomic reduction. Rep. Math. Phys. 32, 99-115 (1993) · Zbl 0798.58026 · doi:10.1016/0034-4877(93)90073-N
[3] Bates, L., Graumann, H., MacDonnell, C.: Examples of gauge conservation laws in nonholonomic systems. Rep. Math. Phys. 37, 295-308 (1996) · Zbl 0887.58016 · doi:10.1016/0034-4877(96)84069-9
[4] Bismuth, J.-M.: Mécanique Aléatoire. Lecture Notes in Mathematics, vol. 866. Springer, Berlin (1981)
[5] Bloch, A.M.: Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics. Springer, New York (2003) · Zbl 1187.60045
[6] Bloch, A.M., Rojo, A.G.: Quantization of a nonholonomic system. Phys. Rev. Lett. 101, 030402 (2008) · Zbl 1228.81194 · doi:10.1103/PhysRevLett.101.030402
[7] Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Nonholonomic dynamics. Not. AMS 52, 320-329 (2005) · Zbl 1142.70006
[8] Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21-99 (1996) · Zbl 0886.70014 · doi:10.1007/BF02199365
[9] Boris, A.V., Mamaev, I.S.: The rolling motion of a rigid body on a plane and a sphere. Hierarchy of dynamics. Reg. Chaot. Dyn 7, 177-200 (2002) · Zbl 1058.70009 · doi:10.1070/RD2002v007n02ABEH000204
[10] Bou-Rabee, N., Owhadi, H.: Stochastic variational integrators. IMA J. Numer. Anal. 29, 421-443 (2009) · Zbl 1171.37027 · doi:10.1093/imanum/drn018
[11] Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B.: An empirical comparison of alternative models of the short-term interest rate. J. Finance 47, 1209-1227 (1992) · doi:10.1111/j.1540-6261.1992.tb04011.x
[12] Chaplygin, S.A.: On the theory of motion of nonholonomic systems. The reducing multiplier theorem. Mat. Sbornik XXVIII, 303-314 (1911)
[13] Fassó, F., Giacobbe, A., Sansonetto, N.: Guage conservation laws and the momentum equation in non-holonomic mechanics. Rep. Math. Phys. 62, 345-367 (2008) · Zbl 1166.37023 · doi:10.1016/S0034-4877(09)00005-6
[14] Fedorov, Y.N., Zenkov, D.V.: Dynamics of discrete Chaplygin sleigh. Discrete Contin. Dyn. Syst. 258-267 (2005) · Zbl 1144.37446
[15] Gay-Balmaz, F., Yoshimura, H.: Dirac reduction for nonholonomic mechanical systems and semidirect products. Adv. Appl. Math. 63, 131-213 (2015) · Zbl 1302.70054 · doi:10.1016/j.aam.2014.10.004
[16] Gilsinga, H., Shardlow, T.: Sdelab: a package for solving stochastic differential equations in matlab. J. Comput. Appl. Math. 205, 1002-1018 (2007) · Zbl 1116.65005 · doi:10.1016/j.cam.2006.05.037
[17] Hochgerner, S.: Stochastic Chaplygin systems. Rep. Math. Phys. 66, 385-401 (2010) · Zbl 1291.37096 · doi:10.1016/S0034-4877(10)80010-2
[18] Hochgerner, S., Ratiu, T.S.: Geometry of non-holonomic diffusion. J. Eur. Math. Soc. 17, 273-319 (2015) · Zbl 1317.37064 · doi:10.4171/JEMS/504
[19] Holm, D.D.: Geometric Mechanics Part 2: Rotating, Translating and Rolling. Imperial College Press, London (2008) · Zbl 1149.70001 · doi:10.1142/p549
[20] Kim, B.: Routh symmetry in the Chaplygin’s rolling ball. Reg. Chaot. Dyn. 16, 663-670 (2011) · Zbl 1253.37065 · doi:10.1134/S1560354711060074
[21] Kozlov, V.V.: Invariant measures of the Euler-Poincaré equations on Lie algebras. Funct. Anal. Appl. 22, 58-59 (1988) · Zbl 0667.58038 · doi:10.1007/BF01077727
[22] Lázaro-Camí, J.-A., Ortega, J.-P.: Stochastic Hamiltonian dynamical systems. Rep. Math. Phys 61, 65-122 (2008) · Zbl 1147.37032 · doi:10.1016/S0034-4877(08)80003-1
[23] Lázaro-Camí, J.-A., Ortega, J.-P.: The stochastic Hamilton-Jacobi equation. J. Geom. Mech. 1, 295-315 (2009a) · Zbl 1278.60104 · doi:10.3934/jgm.2009.1.295
[24] Lázaro-Camí, J.-A., Ortega, J.-P.: Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations. Stoch. Dyn. 9, 1-46 (2009b) · Zbl 1187.60045 · doi:10.1142/S0219493709002531
[25] Lewis, A.D., Murray, R.M.: Variational principles for constrained systems: theory and experiment. Int. J. Nonlinear Mech. 30, 793-815 (1995) · Zbl 0864.70008 · doi:10.1016/0020-7462(95)00024-0
[26] Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Volume 33. Translations of Mathematical Monographs. AMS, Providence (1972) · Zbl 0245.70011
[27] Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967) · Zbl 0165.58502
[28] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions, Print companion to [DLMF]. Cambridge University Press, New York, NY (2010) · Zbl 1198.00002
[29] Pavliotis, G.: Stochastic Processes and Applications. Texts in Applied Mathematics. Springer, Berlin (2014) · Zbl 1318.60003
[30] Reynolds, O.: On rolling-friction. Philos. Trans. R. Soc. 166, 155-174 (1876) · doi:10.1098/rstl.1876.0006
[31] Schneider, D.: Non-holonomic Euler-Poincaré equations and stability in Chaplygins sphere. Dyn. Syst. 17, 87-130 (2002) · Zbl 1036.70009 · doi:10.1080/02681110110112852
[32] Shi, D., Berchenko-Kogan, Y., Zenkov, D.V., Bloch, A.M.: Hamel’s formalism for infinite-dimensional mechanical systems. J. Nonlinear Sci. (under consideration) (2015) · Zbl 1360.70023
[33] Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s formalism and variational integrators on a sphere. In: 51st IEEE Conference on Decision and Control, pp. 7504-7510 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.