×

Model predictive control with discrete actuators: theory and application. (English) Zbl 1357.93038

Summary: Despite the presence of discrete actuators in many industrial processes, Model Predictive Control (MPC) theory typically considers only continuous actuators, which requires discrete decisions to be removed from the MPC layer. However, if discrete inputs are chosen optimally, process performance may be greatly improved, and thus, discrete decisions should be treated directly in MPC theory. In this paper, we develop the idea that discrete actuators can be added to MPC theory without major modification, i.e., results established with sufficient generality for standard MPC with continuous actuators hold also for MPC with discrete actuators. First, we show that standard exponential stability for suboptimal MPC can be extended without modification to cover discrete actuators by avoiding restrictive assumptions about the geometry of the control set. Then, we prove stability results for tracking MPC applied to a time-varying periodic system. Finally, we illustrate these results with two example systems.

MSC:

93B40 Computational methods in systems theory (MSC2010)
93D20 Asymptotic stability in control theory
93C55 Discrete-time control/observation systems

Software:

BARON; Gurobi
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aguilera, R. P.; Quevedo, D. E., Stability analysis of quadratic MPC with a discrete input alphabet, IEEE Transactions on Automatic Control, 58, 12, 3190-3196 (2013) · Zbl 1369.93431
[2] Baotic, M.; Christophersen, F. J.; Morari, M., Constrained optimal control of hybrid systems with a linear performance index, IEEE Transactions on Automatic Control, 51, 12, 1903-1919 (2006) · Zbl 1366.49029
[3] Bemporad, A.; Morari, M., Control of systems integrating logic, dynamics, and constraints, Automatica, 35, 407-427 (1999) · Zbl 1049.93514
[4] Böhm, C.; Raff, T.; Reble, M.; Allgöwer, F., LMI-based model predictive control for linear discrete-time periodic systems, (Magni, L.; Raimondo, D.; Allgöwer, F., Nonlinear model predictive control - towards new challenging applications (2009), Springer: Springer Berlin/Heidelberg), 99-108 · Zbl 1195.93078
[5] Borrelli, F.; Baotić, M.; Bemporad, A.; Morari, M., Dynamic programming for constrained optimal control of discrete-time linear hybrid systems, Automatica, 41, 10, 1709-1721 (2005) · Zbl 1125.49310
[6] Camacho, E. F.; Ramirez, D. R.; Limon, D.; de la Peña, D. M.; Alamo, T., Model predictive control techniques for hybrid systems, Annual Reviews in Control, 34, 1, 21-31 (2010)
[7] Chu, E. K.-W.; Fan, H.-Y.; Lin, W.-W.; Wang, C.-S., Structure-preserving algorithms for periodic discrete-time algebraic riccati equations, International Journal of Control (2007) · Zbl 1061.93061
[8] DeCarlo, R. A.; Branicky, M. S.; Pettersson, S.; Lennartson, B., Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88, 7, 1069-1082 (2000)
[9] Di Cairano, S.; Heemels, W.; Lazar, M.; Bemporad, A., Stabilizing dynamic controllers for hybrid systems: A hybrid control Lyapunov function approach, IEEE Transactions on Automatic Control, 59, 10, 2629-2643 (2014) · Zbl 1360.93540
[10] El-Farra, N. H.; Christofides, P. D., Coordinating feedback and switching for control of hybrid nonlinear processes, AIChE Journal, 49, 8, 2079-2098 (2003)
[12] García, C. E.; Prett, D. M.; Morari, M., Model predictive control: Theory and practice—a survey, Automatica, 25, 3, 335-348 (1989) · Zbl 0685.93029
[13] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems (2012), Princeton University Press: Princeton University Press Princeton and Oxford · Zbl 1241.93002
[14] Gondhalekar, R.; Jones, C. N., MPC of constrained discrete-time linear periodic systems—a framework for asynchronous control: Strong feasibility, stability and optimality via periodic invariance, Automatica, 47, 2, 326-333 (2011) · Zbl 1207.93058
[16] Hahn, W., Stability of motion (1967), Springer-Verlag: Springer-Verlag Berlin, Translated by Arne P. Baartz · Zbl 0189.38503
[17] Kobayshi, K.; Shein, W. W.; Hiraishi, K., Large-scale MPC with continuous/discrete-valued inputs: Compensation of quantization errors, stabilization, and its application, SICE Journal of Control, Measurement, and System Integration, 7, 3, 152-158 (2014)
[19] Mayne, D. Q.; Rawlings, J. B.; Rao, C. V.; Scokaert, P. O.M., Constrained model predictive control: Stability and optimality, Automatica, 36, 6, 789-814 (2000) · Zbl 0949.93003
[20] Mhaskar, P.; El-Farra, N. H.; Christofides, P. D., Hybrid predictive control of process systems, AIChE Journal, 50, 6, 1242-1259 (2004)
[21] Pannocchia, G.; Rawlings, J. B.; Wright, S. J., Conditions under which suboptimal nonlinear MPC is inherently robust, Systems and Control Letters, 60, 747-755 (2011) · Zbl 1226.93110
[23] Quevedo, D. E.; Goodwin, G. C.; De Doná, J. A., Finite constraint set receding horizon quadratic control, International Journal of Robust and Nonlinear Control, 14, 4, 355-377 (2004) · Zbl 1036.93024
[24] Rao, C. V.; Rawlings, J. B., Steady states and constraints in model predictive control, AIChE Journal, 45, 6, 1266-1278 (1999)
[25] Rawlings, J. B.; Mayne, D. Q., Model predictive control: theory and design, 576 (2009), Nob Hill Publishing: Nob Hill Publishing Madison, WI
[26] Rawlings, J. B.; Mayne, D. Q., Postface to model predictive control: theory and design (2011), URL http://jbrwww.che.wisc.edu/home/jbraw/mpc/postface.pdf
[27] Rawlings, J. B.; Risbeck, M. J., On the equivalence between statements with epsilon-delta and K-functions. Technical Report 2015-01, TWCCC Technical Report (2015), URL http://jbrwww.che.wisc.edu/tech-reports/twccc-2015-01.pdf
[29] Sager, S.; Bock, H. G.; Diehl, M., The integer approximation error in mixed-integer optimal control, Mathematical Programming, 133, 1-2, 1-23 (2010) · Zbl 1259.90077
[31] Sanfelice, R. G., Control of hybrid dynamical systems: An overview of recent advances, (Daafouz, J.; Tarbouriech, S.; Sigalotti, M.; Daafouz, J.; Tarbouriech, S.; Sigalotti, M., Hybrid systems with constraints (2013), Wiley), 146-177
[32] Scokaert, P. O.M.; Mayne, D. Q.; Rawlings, J. B., Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control, 44, 3, 648-654 (1999) · Zbl 1056.93619
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.