×

Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations. (English. Russian original) Zbl 1361.65032

Comput. Math. Math. Phys. 56, No. 9, 1551-1564 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 9, 1571-1585 (2016).
Summary: Numerical continuation of solution through certain singular points of the curve of the set of solutions to a system of nonlinear algebraic or transcendental equations with a parameter is considered. Bifurcation points of codimension two and three are investigated. Algorithms and computer programs are developed that implement the procedure of discrete parametric continuation of the solution and find all branches at simple bifurcation points of codimension two and three. Corresponding theorems are proved, and each algorithm is rigorously justified. A novel algorithm for the estimation of errors of tangential vectors at simple bifurcation points of a finite codimension \(m\) is proposed. The operation of the computer programs is demonstrated by test examples, which allows one to estimate their efficiency and confirm the theoretical results.

MSC:

65H10 Numerical computation of solutions to systems of equations
65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations

Software:

pchip; UNCMND
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems (Springer, Berlin, 1987). · Zbl 0656.65063
[2] E. I. Grigolyuk and V. I. Shalashilin, Nonlinear Strain Problems (Nauka, Moscow, 1988) [in Russian]. · Zbl 0655.73023
[3] E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Series in Computational Mathematics, Vol. 13 (Springer, Berlin, 1990). · Zbl 0717.65030 · doi:10.1007/978-3-642-61257-2
[4] J. D. Crawford, “Introduction to bifurcation theory,” Rev. Modern Phys. 63, 991-1037(1991). · doi:10.1103/RevModPhys.63.991
[5] E. B. Kuznetsov, “Criterion-based approach to the analysis of a dynamic panel jumping,” Izv. Ross. Akad. Nauk, Ser. Mekh. Tverd. Tela, No. 1, 150-160 (1996).
[6] V. I. Shalashilin and E. B. Kuznetsov, Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics (Editorial URSS, Moscow, 1999; Kluwer, Dordrecht, 2003). · Zbl 1040.65060 · doi:10.1007/978-94-017-2537-8
[7] E. I. Grigolyuk and E. A. Lopanitsyn, Finite Bends, Stability, and Supercritical Behavior of Thin Slightly Sloping Shells (Mosc. Avtomekhanicheskii Institut, Moscow, 2004) [in Russian].
[8] S. D. Krasnikov and E. B. Kuznetsov, “The numerical continuation of solutions at the bifurcation points of mathematical models,” Mat. Model. 21, 47-58 (2009). · Zbl 1212.78035
[9] S. D. Krasnikov and E. B. Kuznetsov, “Parametrization of a solution at bifurcation points,” Differ. Equations 45, 1218-1222 (2009). · Zbl 1181.65075 · doi:10.1134/S001226610908014X
[10] V. V. Karpov, Strength and Stability of Stiffened Shells of Revolution, Part 1 (Fizmatlit, Moscow, 2010), Part 2 (Fizmatlit, Moscow, 2011).
[11] S. S. Gavryushin, O. O. Baryshnikova, and O. F. Boriskin, Numerical Analysis of Construction Elements of Machines and Devices (Bauman Mosc. Gos. Technical Univ. Moscow, 2014) [in Russian].
[12] D. F. Davidenko, “On the approximate solution of systems of nonlinear equations,” Ukr. Mat. Zh. 5, (2), 196-206 (1953). · Zbl 0053.08902
[13] V. I. Shalashilin and E. B. Kuznetsov, “The best parameter for the continuation of solution,” Dokl. Akad. Nauk 334, 566-568 (1994). · Zbl 0851.65027
[14] S. D. Krasnikov and E. B. Kuznetsov, “Numerical continuation of solution at singular points of codimension one,” Comput. Math. Math. Phys. 55, 1802-1822 (2015). · Zbl 1337.65043 · doi:10.1134/S096554251511010X
[15] V. A. Trenogin, Functional Analysis (Nauka, Moscow, 2002) [in Russian]. · Zbl 0804.46001
[16] A. M. Lyapunov, The General Problem of the Stability of Motion (Khar’kov, 1892) [in Russian]. · Zbl 0041.32204
[17] E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen. Teil 3. Über die Auflösungen der nichtlinear Integralgleichung und die Verzweigung ihrer Lösunger,” Math. Ann. 65, 370-399 (1908). · JFM 39.0399.03 · doi:10.1007/BF01456418
[18] M. M. Vainberg and V. A. Trenogin, Bifurcation Theory for Solutions to Nonlinear Equations (Nauka, Moscow, 1969) [in Russian]. · Zbl 0186.20805
[19] M. A. Krasnosel’skii, G. M. Vainikko, P. P. Zabreiko, et al., Approximate Solution of Operator Equations (Nauka, Moscow, 1969) [in Russian]. · Zbl 0194.17902
[20] M. G. Crandall and P. H. Rabinowitz, “Bifurcation from simple eigenvalues,” J. Funct. Anal. 8, 321-340 (1971). · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[21] H. Kielhofer, Bifurcation Theory: An Introduction with Applications to PDEs, Ser. Appl. Math. Sciences (Springer, New York, 2004), Vol. 156. · Zbl 1032.35001 · doi:10.1007/b97365
[22] E. B. Kuznetsov and V. I. Shalashilin, “Parametric approximation,” Zh. Vychisl. Mat. Mat. Fiz. 34, 1757-1769 (1994). · Zbl 0839.65012
[23] E. B. Kuznetsov and A. Yu. Yakimovich, “Modeling curves by parametric polynomials using the least squares method,” Mat. Model. 16, 48-51 (2004). · Zbl 1053.65011
[24] E. B. Kuznetsov and A. Yu. Yakimovich, “Optimal parametrization in approximation of curves and surfaces,” Comput. Math. Math. Phys. 45, 732-745 (2005). · Zbl 1092.65013
[25] E. B. Kuznetsov and A. Yu. Yakimovich, “The best parametrization for parametric interpolation,” J. Comput. Appl. Math. 191, 239-245 (2006). · Zbl 1092.65014 · doi:10.1016/j.cam.2005.06.040
[26] S. D. Krasnikov and E. B. Kuznetsov, “On the parametrization of numerical solutions to boundary value problems for nonlinear differential equations,” Comput. Math. Math. Phys. 45, 2066-2076 (2005). · Zbl 1102.65081
[27] S. D. Krasnikov and E. B. Kuznetsov, “Parameterization of numerical solutions of nonlinear boundary value problems,” Mat. Model. 18, 3-16 (2006). · Zbl 1103.65085
[28] S. D. Krasnikov and E. B. Kuznetsov, “A remark on the parametrization of the numerical solution of boundary value problems,” Differ. Equations 43, 964-973 (2007). · Zbl 1176.65082 · doi:10.1134/S0012266107070105
[29] E. B. Kuznetsov, “The best parameterization in curve construction,” Comput. Math. Math. Phys. 44, 1462-472 (2004). · Zbl 1077.65016
[30] E. B. Kuznetsov, “Optimal parametrization in numerical construction of curve,” J. Franklin Inst. 344, 658-671 (2007). · Zbl 1269.65049 · doi:10.1016/j.jfranklin.2006.02.036
[31] E. B. Kuznetsov, “On the best parametrization,” Comput. Math. Math. Phys. 48, 2162-2171 (2008). · Zbl 1145.74391 · doi:10.1134/S0965542508120063
[32] E. B. Kuznetsov, “Multidimensional parametrization and numerical solution of systems of nonlinear equations,” Comput. Math. Math. Phys. 50, 244-255 (2010). · Zbl 1224.65136 · doi:10.1134/S0965542510020065
[33] E. B. Kuznetsov, “Continuation of solutions in multiparameter approximation of curves and surfaces,” Comput. Math. Math. Phys. 52, 1149-1162 (2012). · Zbl 1274.65043 · doi:10.1134/S0965542512080076
[34] J. Levin, “A parametric algorithm for drawing pictures of solid objects composed of quadric surfaces,” Commun. ACM 19, 555-563 (1976). · Zbl 0334.68050 · doi:10.1145/360349.360355
[35] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software (Prentice Hall, Englewood Cliffs, N.J., 1988; Mir, Moscow, 1998). · Zbl 0744.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.