×

Modeling mixed mode fracture of concrete by using the combined discrete and finite elements method. (English) Zbl 1359.74380

Summary: The mixed mode (I/II) fracture of concrete is investigated by using a four-point combined discrete and finite elements method. The potential fracture zone is simulated by the discrete elements (DEs) and the other zone by the finite elements (FEs). A cohesive fracture model is employed to simulate the brittle fracture only in the DE subregion. Mesh-size independency of the cohesive fracture model subjected to the DE is carefully investigated with a simple case. Subsequently, the mixed mode fracture behaviors of two simple concrete specimens are simulated and the simulation results achieve good agreements with the other simulations and experimental results.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

DEMPack; CDFP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aliha, M. R. M., Behbahani, H., Fazaeli, H. et al. [2014] ” Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures,” Constr. Build. Mater.54, 623-635. genRefLink(16, ’S0219876216500079BIB001’, ’10.1016
[2] Belytschko, T., Organ, D. and Gerlach, C. [2000] ” Element-free Galerkin methods for dynamics fracture in concrete,” Comput. Methods Appl. Mech. Eng.187, 385-399. genRefLink(16, ’S0219876216500079BIB002’, ’10.1016 · Zbl 0962.74077
[3] Carmona, J. R., Ruiz, G. and del Viso, J. R. [2007] ” Mixed-mode crack propagation through reinforced concrete,” Eng. Fract. Mech.74, 2788-2809. genRefLink(16, ’S0219876216500079BIB003’, ’10.1016
[4] Carpinteri, A. and Colombo, G. [1989] ” Numeriacal analysis of catastrophic softening behavior (snap-back instability),” Comput. Struct.31, 607-636. genRefLink(16, ’S0219876216500079BIB004’, ’10.1016
[5] Carpinteri, A., Valente, S., Ferrara, G. et al. [1993] ” Is mode II fracture energy a real material properity,” Comput. Struct.48, 397-413. genRefLink(16, ’S0219876216500079BIB005’, ’10.1016
[6] Choi, J. L. and Gethin, D. T. [2009] ” A discrete finite element modelling and measurements for powder compaction,” Model. Simul. Mater. Sci. Eng.17, 035005. genRefLink(16, ’S0219876216500079BIB006’, ’10.1088
[7] Frenning, G. [2008] ” An efficient finite/discrete element procedure for simulating compression of 3D particle assemblies,” Comput. Methods Appl. Mech. Eng.197, 4266-4272. genRefLink(16, ’S0219876216500079BIB007’, ’10.1016 · Zbl 1194.74398
[8] Gao, W. and Zang, M. Y. [2013] ” Simulation of impact fracture process of laminated glass beam based on cohesive model,” J. South China Univ. Technol. Nat. Sci.41, 139-144 (in Chinese).
[9] Gao, W., Zang, M. Y. and Xu, W. [2014] ” An approach to freely combining 3D discrete and finite element methods,” Int. J. Comput. Methods11, 1350051, doi: [10.1142/S0219876213500515] . [Abstract] genRefLink(128, ’S0219876216500079BIB009’, ’000324264600006’); · Zbl 1359.74407
[10] Gethin, D. T., Yang, X. S. and Lewis, R. W. [2006] ” A two dimensional combined discrete and finite element scheme for simulating the flow and compaction of systems comprising irregular particulates,” Comput. Methods Appl. Mech. Eng.195, 5552-5565. genRefLink(16, ’S0219876216500079BIB010’, ’10.1016 · Zbl 1128.74043
[11] Ghasemnejad, H. and Mirzaii, H. [2014] ” To improve mixed-mode interlaminar fracture toughness of composite sub-structures,” Open J. Compos. Mater.4, 32-39. genRefLink(16, ’S0219876216500079BIB011’, ’10.4236
[12] Gravouil, A., Moës, N. and Belytschko, T. [2002] ” Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update,” Int. J. Numer. Methods Eng.53, 2569-2586. genRefLink(16, ’S0219876216500079BIB012’, ’10.1002 · Zbl 1169.74621
[13] Guo, Z. K., Kobayashi, A. S. and Hawkins, N. M. [1995] ” Dynamics mixed mode fracture of concrete,” Int. J. Solids Struct.32, 2591-2607. genRefLink(16, ’S0219876216500079BIB013’, ’10.1016
[14] Hillerborg, A., Modéer, M. and Peterson, P. E. [1976] ” Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements,” Cement Concrete Res.6, 773-782. genRefLink(16, ’S0219876216500079BIB014’, ’10.1016
[15] John, R. and Shah, S. P. [1990] ” Mixed-mode fracture of concrete subjected to impact loading,” J. Struct. Eng.116, 585-602. genRefLink(16, ’S0219876216500079BIB015’, ’10.1061
[16] Karami, A. and Stead, D. [2008] ” Asperity degradation and damage in the direct shear test: A hybrid FEM/DEM approach,” Rock Mech. Rock Eng.41, 229-266. genRefLink(16, ’S0219876216500079BIB016’, ’10.1007
[17] Komodromos, P. [2005] ” A simplified updated lagrangian approach for combining discrete and finite element methods,” Comput. Mech.35, 305-313. genRefLink(16, ’S0219876216500079BIB017’, ’10.1007 · Zbl 1109.74361
[18] Komodromos, P. I. and Williams, J. R. [2004] ” Dynamic simulation of multiple deformable bodies using combined discrete and finite element methods,” Eng. Comput.21, 431-448. genRefLink(16, ’S0219876216500079BIB018’, ’10.1108 · Zbl 1062.74657
[19] Lawn, B. [1993] Fracture of Brittle Solids, 2nd Edition (Cambridge University Press, Cambridge, United Kingdom). genRefLink(16, ’S0219876216500079BIB019’, ’10.1017
[20] Lei, Z. and Zang, M. Y. [2010] ” An approach to combining 3D discrete and finite element methods based on penalty function method,” Comput. Mech.46, 609-619. genRefLink(16, ’S0219876216500079BIB020’, ’10.1007
[21] Lewis, R. W., Gethin, D. T., Yang, X. S. et al. [2005] ” A combined finite-discrete element method for simulating pharmaceutical powder tableting,” Int. J. Numer. Methods Eng.62, 853-869. genRefLink(16, ’S0219876216500079BIB021’, ’10.1002 · Zbl 1080.74047
[22] Li, Z. J. [2011] Advanced Concrete Technology (John Wiley & Sons Ltd, England). genRefLink(16, ’S0219876216500079BIB022’, ’10.1002
[23] Liu, W. and Hong, J. W. [2012] ” A coupling approach of discretized peridynamics with finite element method,” Comput. Methods Appl. Mech. Eng.245-246, 163-175. genRefLink(16, ’S0219876216500079BIB023’, ’10.1016 · Zbl 1354.74284
[24] Moës, N. and Belytschko, T. [2002] ” Extend finite element method for cohesive crack growth,” Eng. Fract. Mech.69, 813-833. genRefLink(16, ’S0219876216500079BIB024’, ’10.1016
[25] Moës, N., Dolbow, J. and Belytschko, T. [1999] ” A finite element method for crack growth without remeshing,” Int. J. Numer. Methods Eng.46, 131-150. genRefLink(16, ’S0219876216500079BIB025’, ’10.1002 · Zbl 0955.74066
[26] Moës, N., Gravouil, A. and Belytschko, T. [2002] ” Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model,” Int. J. Numer. Methods Eng.53, 2549-2568. genRefLink(16, ’S0219876216500079BIB026’, ’10.1002 · Zbl 1169.74621
[27] Munjiza, A. [2004] The Combined Finite-Discrete Element Method (John Wiley & Sons Ltd, England). genRefLink(16, ’S0219876216500079BIB027’, ’10.1002 · Zbl 1194.74452
[28] Nooru-Mohamed, M. B., Schlangen, E. and van Mier, J. G. M. [1993] ” Experimental and numerical study on the behavior of concrete subjected to biaxial tension and shear,” Adv. Cement Base. Mater.1, 22-37. genRefLink(16, ’S0219876216500079BIB028’, ’10.1016
[29] Nunes, L. C. S. and Reis, J. M. L. [2014] ” Experimantal investigation of mixed-mode-I/II fracture in polymer mortars using digital image correlation method,” Lat. Am. J. Solids Struct.11, 330-343. genRefLink(16, ’S0219876216500079BIB029’, ’10.1590
[30] Oñnate, E. and Rojekb, J. [2004] ” Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems,” Comput. Methods Appl. Mech. Eng.193, 3087-3128. genRefLink(16, ’S0219876216500079BIB030’, ’10.1016 · Zbl 1079.74646
[31] Ortiz, M. and Pandolfi, A. [1999] ” Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis,” Int. J. Numer. Methods Eng.44, 1267-1282. genRefLink(16, ’S0219876216500079BIB031’, ’10.1002 · Zbl 0932.74067
[32] Papoulia, K. D., Sam, C. H. and Vavasis, S. A. [2003] ” Time continuity in cohesive finite element modeling,” Int. J. Numer. Methods Eng.58, 679-701. genRefLink(16, ’S0219876216500079BIB032’, ’10.1002 · Zbl 1032.74676
[33] Repetto, E. A., Radovitzky, R. and Ortiz, M. [2000] ” Finite element simulation of dynamic frature and fragmentation of glass rods,” Comput. Methods Appl. Mech. Eng.183, 3-14. genRefLink(16, ’S0219876216500079BIB033’, ’10.1016
[34] Ru, Z. L., Shen, W. and Zhao, H. B. [2013] ” Simulation of mixed-mode fracture process of reinforced concrete beam based on extended finite element method,” Eng. Mech.30, 215-220 (in Chinese).
[35] Ruiz, G., Pandolfi, A. and Ortiz, M. [2001] ” Three-dimensional cohesive modeling of dynamic mixed-mode fracture,” Int. J. Numer. Methods Eng.52, 97-120. genRefLink(16, ’S0219876216500079BIB035’, ’10.1002
[36] Shan, L., Cheng, M., Liu, K. X. et al. [2009] ” New discrete element models for three-dimensional impact problems,” Chin. Phys. Lett.26, 120202. genRefLink(16, ’S0219876216500079BIB036’, ’10.1088
[37] Tang, Z. P. and Xu, J. L. [2007] ” A combined discrete/cylindrical shell finite element multiscale method and its application,” Chin. J. Comput. Mech.24, 591-596 (in Chinese).
[38] Unger, J. F., Eckardt, S. and Könke, C. [2007] ” Modelling of cohesive crack growth in concrete structures with the extended finite element method,” Comput. Methods Appl. Mech. Eng.196, 4087-4100. genRefLink(16, ’S0219876216500079BIB038’, ’10.1016 · Zbl 1173.74387
[39] Xu, W. and Zang, M. Y. [2014] ” Four-point combined DE/FE algorithm for brittle fracture analysis of laminated glass,” Int. J. Solids Struct.51, 1890-1900. genRefLink(16, ’S0219876216500079BIB039’, ’10.1016
[40] Yu, J. B., Liu, X. K. and Zangm M. Y. [2010] ” Impacting response emulation of front windshield based on DEM/FEM coupling,” J. Hunan Univ. Nat. Sci.37, 126-129 (in Chinese).
[41] Zhang, R. and Tang, Z. P. [2010] ” A multiscale method of time and space by coupling three-dimensional DEM and cylindrical shell FEM,” Eng. Mech.27, 44-50 (in Chinese). genRefLink(16, ’S0219876216500079BIB041’, ’10.3901
[42] Zhang, Z., Paulino, G. H. and Celes, W. [2007] ” Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials,” Int. J. Numer. Methods Eng.72, 893-923. genRefLink(16, ’S0219876216500079BIB042’, ’10.1002 · Zbl 1194.74319
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.