×

Comparison and numerical treatment of generalised Nernst-Planck models. (English) Zbl 1360.82088

Summary: In its most widespread, classical formulation, the Nernst-Planck-Poisson system for ion transport in electrolytes fails to take into account finite ion sizes. As a consequence, it predicts unphysically high ion concentrations near electrode surfaces. Historical and recent approaches to an appropriate modification of the model are able to fix this problem. Several appropriate formulations are compared in this paper. The resulting equations are reformulated using absolute activities as basic variables describing the species amounts. This reformulation allows to introduce a straightforward generalisation of the Scharfetter-Gummel finite volume discretisation scheme for drift-diffusion equations. It is shown that it is thermodynamically consistent in the sense that the solution of the corresponding discretised generalised Poisson-Boltzmann system describing the thermodynamical equilibrium is a stationary state of the discretised time-dependent generalised Nernst-Planck system. Numerical examples demonstrate the improved physical correctness of the generalised models and the feasibility of the numerical approach.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
82C70 Transport processes in time-dependent statistical mechanics
65N08 Finite volume methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Newman, J.; Thomas-Alyea, K. E., Electrochemical Systems (2012), Wiley-Interscience
[2] Stern, O., Zur Theorie der elektrolytischen Doppelschicht, Z. f. Electrochemie, 30, 508 (1924)
[3] Bikerman, J. J., Structure and capacity of electrical double layer, Phil. Mag., 33, 220, 384-397 (1942) · Zbl 0028.36801
[4] Freise, V., Zur Theorie der diffusen Doppelschicht, Z. Elektrochem, 56, 822-827 (1952)
[5] Sparnaay, M. J., Corrections of the theory of the flat diffuse double layer, Recueil des Travaux Chimiques des Pays-Bas, 77, 9, 872-888 (1958)
[6] Carnahan, N. F.; Starling, K. E., Equation of state for nonattracting rigid spheres, J. Chem. Phys., 51, 635 (1969)
[7] Mansoori, G. A.; Carnahan, N. F.; Starling, K. E.; Leland, T. W., Equilibrium thermodynamic properties of the mixture of hard spheres, J. Chem. Phys., 54, 1523 (1971)
[8] Kornyshev, A. A.; Vorotyntsev, M. A., Conductivity and space charge phenomena in solid electrolytes with one mobile charge carrier species, a review with original material, Electrochim. Acta, 26, 3, 303-323 (1981)
[9] Manciu, M.; Ruckenstein, E., Lattice site exclusion effect on the double layer interaction, Langmuir, 18, 13, 5178-5185 (2002)
[10] Tresset, G., Generalized Poisson-Fermi formalism for investigating size correlation effects with multiple ions, Phys. Rev. E, 78, 6, 061506 (2008)
[11] Biesheuvel, P. M.; Van Soestbergen, M., Counterion volume effects in mixed electrical double layers, J. Colloid Interface Sci., 316, 2, 490-499 (2007)
[12] Bazant, M. Z.; Kilic, M. S.; Storey, B. D.; Ajdari, A., Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions, Adv. Coll. Interf. Sci., 152, 1, 48-88 (2009)
[13] de Groot, S. R.; Mazur, P. O., Non-Equilibrium Thermodynamics (1962), Dover Publications · Zbl 1375.82003
[14] Dreyer, W.; Guhlke, C.; Müller, R., Overcoming the shortcomings of the Nernst-Planck model, Phys. Chem. Chem. Phys., 15, 7075-7086 (2013)
[15] Scharfetter, D. L.; Gummel, H. K., Large signal analysis of a silicon read diode, IEEE Trans. Electron. Dev., 16, 64-77 (1969)
[17] Atkins, P.; de Paula, J., Atkins’ Physical Chemistry (2006), Oxford University Press
[18] Bard, A. J.; Faulkner, L. R., Electrochemical Methods (1980), Wiley New York
[19] Paunov, V. N.; Dimova, R. I.; Kralchevsky, P. A.; Broze, G.; Mehreteab, A., The hydration repulsion between charged surfaces as an interplay of volume exclusion and dielectric saturation effects, J. Colloid Interface Sci., 182, 1, 239-248 (1996)
[20] Blakemore, J. S., Approximations for Fermi-Dirac integrals, especially the function \(F_{\frac{1}{2}}(\eta)\) used to describe electron density in a semiconductor, Solid-State Electron., 25, 11, 1067-1076 (1982)
[21] Landstorfer, M.; Funken, S.; Jacob, T., An advanced model framework for solid electrolyte intercalation batteries, Phys. Chem. Chem. Phys., 13, 28, 12817-12825 (2011)
[23] Macneal, R. H., An asymmetrical finite difference network, Quart. Math. Appl., 11, 295-310 (1953) · Zbl 0053.26304
[24] Bank, R. E.; Rose, D. J., Some error estimates for the box method, SIAM J. Numer. Anal., 24, 4, 777-787 (1987) · Zbl 0634.65105
[25] Prohl, A.; Schmuck, M., Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system, ESAIM Math. Model. Numer. Anal., 44, 03, 531-571 (2010) · Zbl 1247.76052
[26] Droniou, J., Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Math. Models Methods Appl. Sci., 24, 08, 1575-1619 (2014) · Zbl 1291.65319
[27] Glitzky, A.; Gärtner, K., Energy estimates for continuous and discretized electro-reaction-diffusion systems, Nonlinear Anal., 70, 2, 788-805 (2009) · Zbl 1151.35312
[28] Si, H.; Gärtner, K.; Fuhrmann, J., Boundary conforming Delaunay mesh generation, Comput. Math. Math. Phys., 50, 38-53 (2010) · Zbl 1224.65285
[29] Eymard, R.; Gallouët, T.; Herbin, R., Finite volume methods, (Handbook of Numerical Analysis, vol. VII (2000), North-Holland), 713-1020 · Zbl 0981.65095
[32] Bessemoulin-Chatard, M., A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme, Numer. Math., 121, 4, 637-670 (2012) · Zbl 1271.65124
[33] Eymard, R.; Fuhrmann, J.; Gärtner, K., A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems, Numer. Math., 102, 3, 463-495 (2006) · Zbl 1116.65101
[36] Dreyer, W.; Guhlke, C.; Landstorfer, M., A mixture theory of electrolytes containing solvation effects, Electrochem. Comm. (2014)
[37] Eikerling, M.; Berg, P., Poroelectroelastic theory of water sorption and swelling in polymer electrolyte membranes, Soft Matter, 7, 13, 5976-5990 (2011)
[38] Müller, I., Thermodynamics, (Interaction of Mechanics and Mathematics (1985), Pitman) · Zbl 0637.73002
[39] Landau, L. D.; Lifshitz, E. M., Hydrodynamics [in Russian] (1986), Nauka: Nauka Moscow · Zbl 0122.45002
[40] Roubíček, T., Incompressible ionized fluid mixtures, Contin. Mech. Thermodyn., 17, 7, 493-509 (2006) · Zbl 1113.76097
[41] Roichman, Y.; Tessler, N., Generalized Einstein relation for disordered semiconductors—implications for device performance, Appl. Phys. Lett., 80, 11, 1948-1950 (2002)
[42] van Mensfoort, S. L.M.; Coehoorn, R., Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors, Phys. Rev. B, 78, 8, 085207 (2008)
[43] Koprucki, Th.; Gärtner, K., Discretization Scheme for Drift-Diffusion Equations with A Generalized Einstein Relation. Technical Report (2012), Weierstrass Institute, WIAS Preprint No. 1738
[44] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 1-2, 183-217 (2009) · Zbl 1161.92003
[45] Wrzosek, D., Global attractor for a chemotaxis model with prevention of overcrowding, Nonlinear Anal., 59, 8, 1293-1310 (2004) · Zbl 1065.35072
[46] Painter, K. J.; Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10, 4, 501-543 (2002) · Zbl 1057.92013
[47] Burger, M.; Di Francesco, M.; Dolak-Struss, Y., The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38, 4, 1288-1315 (2006) · Zbl 1114.92008
[48] Bartlett, M. S., An inverse matrix adjustment arising in discriminant analysis, Ann. of Math. Stat., 107-111 (1951) · Zbl 0042.38203
[49] Deimling, K., Nonlinear Functional Analysis (1985), Springer · Zbl 0559.47040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.