×

A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations. (English) Zbl 1365.65195

Summary: A fourth-order implicit-explicit time-discretization scheme based on the exponential time differencing approach with a fourth-order compact scheme in space is proposed for space fractional nonlinear Schrödinger equations. The stability and convergence of the compact scheme are discussed. It is shown that the compact scheme is fourth-order convergent in space and in time. Numerical experiments are performed on single and coupled systems of two and four fractional nonlinear Schrödinger equations. The results demonstrate accuracy, efficiency, and reliability of the scheme. A linearly implicit conservative method with the fourth-order compact scheme in space is also considered and used on the system of space fractional nonlinear Schrödinger equations.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

ma2dfc
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797-823 (1995) · Zbl 0841.65081 · doi:10.1137/0732037
[2] Benney, D.J., Newll, A.C.: The propagation of nonlinear wave envelops. J. Math. Phys. 46, 133-139 (1967) · Zbl 0153.30301 · doi:10.1002/sapm1967461133
[3] Berland, H., Owren, B., Skaflestad, B.: Solving the nonlinear Schrödinger equation using exponential integrators. Model. Ident. Control 27, 201-218 (2006) · doi:10.4173/mic.2006.4.1
[4] Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362-387 (1998) · Zbl 0924.65089 · doi:10.1006/jcph.1998.6093
[5] Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430-455 (2002) · Zbl 1005.65069 · doi:10.1006/jcph.2002.6995
[6] Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (I). Abstr. Appl. Anal., Article ID 653797 (2014) · Zbl 1434.65113
[7] Ding, H., Zhang, Y.: A new difference scheme with high accuracy and absolute stability for solving convection-diffusion equations. J. Comput. Appl. Math. 230, 600-606 (2009) · Zbl 1171.65061 · doi:10.1016/j.cam.2008.12.015
[8] Fellah, Z.E.A., Depollier, C.: Application of fractional calculus to the sound waves propagation in rigid porous materials: Validation via ultrasonic measurement. Acta. Acustica 88, 34-39 (2002)
[9] Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204, 468-77 (2008) · Zbl 1163.35483
[10] Garrappa, R., Popolizio, M.: Generalized exponential time differencing methods for fractional order problems. Comput. Math. Appl. 62, 876-890 (2011) · Zbl 1228.65235 · doi:10.1016/j.camwa.2011.04.054
[11] Hederi, M., Islas, A.L., Reger, K., Schober, C.M.: Efficiency of exponential time differencing schemes for nonlinear Schrödinger equations. Math. Comput. Simul. 127, 101-113 (2013) · Zbl 1520.65070 · doi:10.1016/j.matcom.2013.05.013
[12] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (1999) · Zbl 0998.26002
[13] Hochbruck, M., Ostermann, A.: Exponential integrators. Acta. Numerica, 209-286 (2010) · Zbl 1242.65109
[14] Hu, J., Xin, J., Lu, H.: The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 62, 1510-1521 (2011) · Zbl 1228.35264
[15] Ionescu, A.D., Pusateri, F.: Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 266, 139-176 (2012) · Zbl 1304.35749 · doi:10.1016/j.jfa.2013.08.027
[16] Ismail, M.S.: A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation. Appl. Math. Comput. 196, 273-284 (2008) · Zbl 1133.65063
[17] Jia, J., Wang, H.: Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J. Comput. Phys. 293, 359-369 (2015) · Zbl 1349.65561 · doi:10.1016/j.jcp.2014.08.021
[18] Khaliq, A.Q.M., Martin-Vaquero, J., Wade, B.A., Yousuf, M.: Smoothing schemes for reaction-diffusion systems with non-smooth data. J. Comput. Appl. Math. 223, 374-386 (2009) · Zbl 1155.65062 · doi:10.1016/j.cam.2008.01.017
[19] Liang, X., Khaliq, A.Q.M., Xing, Y.: Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations. Commun. Comput. Phys. 17, 510-541 (2015) · Zbl 1388.65086 · doi:10.4208/cicp.060414.190914a
[20] Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci., 1-12 (2006) · Zbl 1122.26007
[21] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[22] Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., Jara, B.M.V.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137-3153 (2009) · Zbl 1160.65308 · doi:10.1016/j.jcp.2009.01.014
[23] Popolizio, M.: A matrix approach for partial differential equations with Riesz space fractional derivatives. Eur. Phys. J. Special Topics 222, 1975-1985 (2013) · Zbl 1282.65059 · doi:10.1140/epjst/e2013-01978-8
[24] Salmi, S., Toivanen, J., Von Sydow, L.: An IMEX-scheme for pricing options under stochastic volatility models with jumps. SIAM J. Sci. Comput. 36, 817-834 (2014) · Zbl 1308.91193 · doi:10.1137/130924905
[25] Sun, J., Qin, M.: Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system. Comput. Phys. Commun. 155, 221-235 (2003) · Zbl 1196.65195 · doi:10.1016/S0010-4655(03)00285-6
[26] Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles,Fields and Media. Higher Education Press and Springer (2010) · Zbl 1214.81004
[27] Wang, P., Huang, C.: A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation. Numer. Algor. 69, 625-641 (2015) · Zbl 1325.65127 · doi:10.1007/s11075-014-9917-x
[28] Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644-655 (2014) · Zbl 1349.65339 · doi:10.1016/j.jcp.2014.04.047
[29] Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72-97 (2005) · Zbl 1072.65130 · doi:10.1016/j.jcp.2004.11.001
[30] Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model 34, 200-218 (2010) · Zbl 1185.65200 · doi:10.1016/j.apm.2009.04.006
[31] Yousuf, M., Khaliq, A.Q.M., Kleefeld, B.: The numerical approximation of nonlinear Black-scholes model for exotic path-dependent American options with transaction cost. Int. J. Comput. Math. 89, 1239-1254 (2012) · Zbl 1255.91434 · doi:10.1080/00207160.2012.688115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.