×

A numerical investigation of flux-limited approximations for pedestrian dynamics. (English) Zbl 1365.90096

Summary: A hierarchy of models for pedestrian flow with fixed speed is numerically investigated. The starting point is a microscopic model based on a stochastic interacting particle system coupled to an eikonal equation. Starting from this model a nonlocal and nonlinear flux-limited maximum-entropy equation for density and mean velocity is derived via a mean field kinetic equation. Finally, associated classical scalar equations for the density are considered for comparison. These models are compared to each other for different test cases showing the superiority of the flux-limited approach, in particular for situations with smaller values of the stochastic noise.

MSC:

90B20 Traffic problems in operations research
35Q90 PDEs in connection with mathematical programming
35L60 First-order nonlinear hyperbolic equations
35L65 Hyperbolic conservation laws

Software:

HE-E1GODF; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] MATLAB Release 2014a, The MathWorks, Inc., Natick, Massachusetts, USA.
[2] Agnelli, P., Colasuonno, F. and Knopoff, D., A kinetic theory approach to the dynamics of crowd evacuation from bounded domains, Math. Models Methods Appl. Sci.25 (2015) 109-129. · Zbl 1309.35176
[3] Amadori, D. and Di Francesco, M., The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions, Acta Math. Sci.32 (2012) 259-280. · Zbl 1265.35210
[4] Bellomo, N. and Bellouquid, A., On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms, Netw. Heterog. Media6 (2011) 383-399. · Zbl 1260.90052
[5] Bellomo, N., Bellouquid, A. and Knopoff, D., From the microscale to collective crowd dynamics, SIAM J. Multiscale Model. Simulat.11 (2013) 943-963. · Zbl 1280.90019
[6] Bellomo, N., Bellouquid, A., Nieto, J. and Soler, J., Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods Appl. Sci.20 (2010) 1179-1207. · Zbl 1402.92065
[7] Bellomo, N. and Dogbé, C., On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci.18 (2008) 1317-1345. · Zbl 1198.92036
[8] Bellomo, N. and Dogbé, C., On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev.53 (2011) 409-463. · Zbl 1231.90123
[9] Bellomo, N. and Gibelli, L., Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds, Math. Models Methods Appl. Sci.25 (2015) 2417-2437. · Zbl 1325.91042
[10] Bellomo, N., Piccoli, B. and Tosin, A., Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci.22 (2012) 1230004. · Zbl 1252.35192
[11] Bolley, F., Canizo, J. A. and Carrillo, J. A., Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci.21 (2011) 2179-2210. · Zbl 1273.82041
[12] Borsche, R., Colombo, R., Garavello, M. and Meurer, A., Differential equations modeling crowd interactions, J. Nonlinear Sci.25 (2015) 827-859. · Zbl 1327.35244
[13] Borsche, R., Klar, A., Kühn, S. and Meurer, A., Coupling traffic flow networks to pedestrian motion, Math. Models Methods Appl. Sci.24 (2014) 359-380. · Zbl 1279.90035
[14] Borsche, R. and Meurer, A., Interaction of road networks and pedestrian motion at crosswalks, Discrete Contin. Dynam. Syst. Ser. S7 (2014). · Zbl 1302.90036
[15] T. Brunner, Forms of approximate radiation transport, SAND2002-1778, Sandia National Laboratory (July, 2002).
[16] Burger, M., Di Francesco, M., Markowich, P. and Wolfram, M., Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dynam. Syst. Ser. B19 (2014) 1311-1333. · Zbl 1304.49008
[17] Calvo, J., Mazon, J. M., Soler, J. and Verbeni, M., Qualitative properties of the solutions of a nonlinear flux-limited equation arising in the transport of morphogens, Math. Models Methods Appl. Sci.21 (2011) 893-937. · Zbl 1223.35057
[18] Canizo, J., Carrillo, J. and Rosado, J., A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci.21 (2011) 515-539. · Zbl 1218.35005
[19] Carrillo, J., D’Orsogna, M. and Panferov, V., Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models2 (2009) 363-378. · Zbl 1195.92069
[20] Carrillo, J., Klar, A., Martin, S. and Tiwari, S., Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci.20 (2010) 1533-1552. · Zbl 1197.92052
[21] Chuang, Y., D’Orsogna, M., Marthaler, D., Bertozzi, A. and Chayes, L., State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Physica D232 (2007) 33-47. · Zbl 1375.82103
[22] Colombo, R., Garavello, M. and Lécureux-Mercier, M., Non-local crowd dynamics, C. R. Math.349 (2011) 769-772. · Zbl 1225.35053
[23] Colombo, R., Garavello, M. and Lécureux-Mercier, M., A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci.22 (2012) 1150023. · Zbl 1248.35213
[24] Coulombel, J., Golse, F. and Goudon, T., Diffusion approximation and entropy-based moment closure for kinetic equations, Asympt. Anal.45 (2005) 1-39. · Zbl 1091.35038
[25] Degond, P., Appert-Rolland, C., Moussaid, M., Pettré, J. and Theraulaz, G., A hierarchy of heuristic-based models of crowd dynamics, J. Statist. Phys.152 (2013) 1033-1068. · Zbl 1274.91094
[26] P. Degond, M. Herty and J. Liu, Mean field games and model predictive control, to appear in Commun. Math. Sci., arXiv:1412.7517 (2014) 1-23. · Zbl 1383.93029
[27] Degond, P. and Motsch, S., Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci.18 (2008) 1193-1215. · Zbl 1157.35492
[28] Di Francesco, M., Markowich, P., Pietschmann, J. and Wolfram, M., On the Hughes’ model for pedestrian flow: The one-dimensional case, J. Differential Equations250 (2011) 1334-1362. · Zbl 1229.35139
[29] Eddington, A., The Internal Constitution of the Stars (Dover, 1926). · JFM 52.1021.05
[30] Etikyala, R., Göttlich, S., Klar, A. and Tiwari, S., Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models, Math. Models Methods Appl. Sci.24 (2014) 1-21. · Zbl 1298.90019
[31] Frank, H., Hensel, M. and Klar, A., A fast and accurate moment method for the Fokker-Planck equation and applications to electron radiotherapy, SIAM J. Appl. Math.67 (2007) 582-603. · Zbl 1123.78011
[32] Garrett, C. and Hauck, C., A comparison of moment closures for linear kinetic transport equations: The line source benchmark, Transport Theory Statist. Phys.42 (2014) 6-7.
[33] Hauck, C., High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci.9 (2011) 187-205. · Zbl 1284.82050
[34] Helbing, D., A fluid dynamic model for the movement of pedestrians, Complex Syst.6 (1992) 391-415. · Zbl 0776.92016
[35] Helbing, D., Traffic and related self-driven many-particle systems, Rev. Mod. Phys.73 (2001) 1067.
[36] Helbing, D., Farkas, I., Molnar, P. and Vicsek, T., Simulation of pedestrian crowds in normal and evacuation situations, Pedes. Evac. Dynam.21 (2002) 21-58.
[37] Helbing, D. and Molnár, P., Social force model for pedestrian dynamics, Phys. Rev. E51 (1995) 5.
[38] Helbing, D., Twining, C., Bulsari, A., Oliker, S., Furst, M. and Maimon, O., A fluid-dynamic model for the movement of pedestrians, Complex Syst.6 (1993) 391-415. · Zbl 0776.92016
[39] Higham, D., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev.43 (2001) 525-546. · Zbl 0979.65007
[40] Hughes, R., A continuum theory for the flow of pedestrians, Transport. Res. Part B: Methodol.36 (2002) 507-535.
[41] Hughes, R., The flow of human crowds, Ann. Rev. Fluid Mech.35 (2003) 168-182. · Zbl 1125.92324
[42] Klar, A., Schneider, F. and Tse, O., Maximum entropy models for stochastic dynamic systems on the sphere and associated Fokker-Planck equations, Kinet. Relat. Models7 (2014) 509-529. · Zbl 1306.82012
[43] Levermore, C., Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transfer31 (1984) 149-160.
[44] Lewis, E. and Miller, W., Computational Methods in Neutron Transport (John Wiley and Sons, 1984).
[45] Maury, B., Roudneff-Chupin, A. and Santambrogio, F., A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci.20 (2009) 1787-1821. · Zbl 1223.35116
[46] Osher, S. and Sethian, J., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys.79 (1988) 12-49. · Zbl 0659.65132
[47] Piccoli, B. and Tosin, A., Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodynam.21 (2009) 85-107. · Zbl 1170.90351
[48] Schneider, F., Alldredge, G., Frank, M. and Klar, A., Higher-order mixed-moment approximations for the Fokker-Planck equation in one space dimension, SIAM J. Appl. Math.74 (2014) 1087-1114. · Zbl 1307.35301
[49] Schneider, F., Alldredge, G. and Kall, J., A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry, Kinet. Relat. Models9 (2015) 193-215. · Zbl 1326.65115
[50] Sethian, J., Fast marching methods, SIAM Rev.41 (1999) 199-235. · Zbl 0926.65106
[51] Spohn, H., Large Scale Dynamics of Interacting Particles, Vol. 825 (Springer, 1991). · Zbl 0742.76002
[52] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, 2009). · Zbl 1227.76006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.