×

Bifurcations of the conjugate locus. (English) Zbl 1367.53039

Summary: The conjugate locus of a point \(p\) in a surface \(\mathcal{S}\) will have a certain number of cusps. As the point \(p\) is moved in the surface the conjugate locus may spontaneously gain or lose cusps. In this paper we explain this ‘bifurcation’ in terms of the vanishing of higher derivatives of the exponential map; we derive simple equations for these higher derivatives in terms of scalar invariants; we classify the bifurcations of cusps in terms of the local structure of the conjugate locus; and we describe an intuitive picture of the bifurcation as the intersection between certain contours in the tangent plane.

MSC:

53C22 Geodesics in global differential geometry
53C20 Global Riemannian geometry, including pinching

Software:

Loki
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[2] Poincaré, H., Sur les lignes geodésiques des surfaces convexes, Trans. Amer. Math. Soc., 17, 237-274 (1905) · JFM 36.0669.01
[3] Myers, S. B., Connections between differential geometry and topology, I: simply connected surfaces, Duke Math. J., 1, 3, 376-391 (1935) · JFM 61.0787.02
[4] Whitehead, J. H.C., On the covering of a complete space by the geodesics through a point, Ann. of Math., 36, 3, 679-704 (1935) · Zbl 0012.27802
[5] Sinclair, R., On the last geometric statement of Jacobi, Experiment. Math., 12, 4, 477-485 (2003) · Zbl 1073.53007
[6] Itoh, J.-I.; Kiyohara, K., The cut loci and the conjugate loci on ellipsoids, Manuscripta Math., 114, 2, 247-264 (2004) · Zbl 1076.53042
[7] Gravesen, J.; Markvorsen, S.; Sinclair, R.; Tanaka, M., The cut locus of a torus of revolution, Asian J. Math., 9, 1, 103-120 (2005) · Zbl 1080.53005
[8] Sinclair, R.; Tanaka, M., The cut locus of a two-sphere of revolution and Toponogov’s comparison theorem, Tohoku Math. J., 59, 379-399 (2007) · Zbl 1158.53033
[9] Itoh, J.-I.; Kiyohara, K., The cut loci on ellipsoids and certain Liouville manifolds, Asian J. Math., 14, 2, 257-290 (2010) · Zbl 1210.53044
[10] Itoh, J.-I.; Kiyohara, K., Cut loci and conjugate loci on Liouville surfaces, Manuscripta Math., 136, 1-2, 115-141 (2011) · Zbl 1231.53035
[11] Sinclair, R.; Tanaka, M., Jacobi’s last geometric statement extends to a wider class of Liouville surfaces, Math. Comp., 75, 256, 1779-1808 (2006) · Zbl 1124.53015
[12] Bonnard, B.; Cots, O.; Jassionnesse, L., Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces, Geom. Control Theory Sub-Riemannian Geom., 5, 53-72 (2014) · Zbl 1296.53082
[13] Sinclair, R.; Tanaka, M., Loki: software for computing cut loci, Experiment. Math., 11, 1, 1-25 (2002) · Zbl 1052.53001
[14] Sinclair, R.; Tanaka, M., A bound on the number of endpoints of the cut locus, LMS J. Comput. Math., 9, 21-39 (2006) · Zbl 1111.53004
[15] Bonnard, B.; Caillau, J.-B.; Picot, G., Geometric and numerical techniques in optimal control of two- and three-body problems, Commun. Inf. Syst., 10, 4, 239-278 (2010) · Zbl 1372.49040
[16] Bonnard, B.; Caillau, J.-B., Geodesic flow of the averaged controlled Kepler equation, Forum Math., 21, 5, 797-814 (2009) · Zbl 1171.49030
[17] Bloch, A. M.; Crouch, P. E., Optimal control and geodesic flows, Systems Control Lett., 28, 2, 65-72 (1996) · Zbl 0877.93029
[18] Bonnard, B.; Caillau, J.-B., Optimality results in orbit transfer, C. R. Acad. Sci. Paris, 1, 345, 319-324 (2007) · Zbl 1122.49018
[19] Bonnard, B.; Caillau, J.-B.; Sinclair, R.; Tanaka, M., Conjugate and cut loci of a two-spere of revolution with application to optimal control, Ann. Inst. Henri Poincaré (C), 26, 4, 1081-1098 (2009) · Zbl 1184.53036
[20] Waters, T. J., Regular and irregular geodesics on spherical harmonic surfaces, Physica D, 241, 5, 543-552 (2012) · Zbl 1250.53039
[21] Waters, T. J., Non-integrability of geodesic flow on certain algebraic surfaces, Phys. Lett. A, 376, 17, 1442-1445 (2012) · Zbl 1260.53137
[22] Combot, T.; Waters, T., Integrability conditions of geodesic flow on homogeneous Monge manifolds, Ergodic Theory Dynam. Systems, 35, 1, 111-127 (2015) · Zbl 1418.37093
[23] Wang, Z. X.; Guo, D. R., Special Functions (1989), World Scientific · Zbl 0724.33001
[24] Bażański, S. L., Kinematics of relative motion of test particles in general relativity, Ann. Inst. Henri Poincaré, 27, 2, 115-144 (1977) · Zbl 0377.53014
[25] Hodgkinson, D. E., A modified equation of geodesic deviation, Gen. Relativity Gravitation, 3, 4, 351-375 (1972) · Zbl 0362.53013
[26] Aleksandrov, A. N.; Piragas, K. A., Geodesic structure, Theoret. and Math. Phys., 38, 1, 48-56 (1979) · Zbl 0454.53034
[27] Vines, J., Geodesic deviation at higher orders via covariant bitensors, Gen. Relativity Gravitation, 47, 5 (2015) · Zbl 1328.83041
[28] Wald, R. M., General Relativity (1984), University of Chicago Press · Zbl 0549.53001
[29] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (2010), Springer
[30] Bruce, J. W.; Giblin, P. J., Curves and Singularities (1992), Cambridge University Press · Zbl 0770.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.