×

Bringing it all together: multi-species integrated population modelling of a breeding community. (English) Zbl 1366.62258

Summary: Integrated population models (IPMs) combine data on different aspects of demography with time-series of population abundance. IPMs are becoming increasingly popular in the study of wildlife populations, but their application has largely been restricted to the analysis of single species. However, species exist within communities: sympatric species are exposed to the same abiotic environment, which may generate synchrony in the fluctuations of their demographic parameters over time. Given that in many environments conditions are changing rapidly, assessing whether species show similar demographic and population responses is fundamental to quantifying interspecific differences in environmental sensitivity and highlighting ecological interactions at risk of disruption. In this paper, we combine statistical approaches to study populations, integrating data along two different dimensions: across species (using a recently proposed framework to quantify multi-species synchrony in demography) and within each species (using IPMs with demographic and abundance data). We analyse data from three seabird species breeding at a nationally important long-term monitoring site. We combine demographic datasets with island-wide population counts to construct the first multi-species Integrated Population Model to consider synchrony. Our extension of the IPM concept allows the simultaneous estimation of demographic parameters, adult abundance and multi-species synchrony in survival and productivity, within a robust statistical framework. The approach is readily applicable to other taxa and habitats.

MSC:

62P12 Applications of statistics to environmental and related topics
62F15 Bayesian inference
92D25 Population dynamics (general)

Software:

CODA; Program MARK; MARK; JAGS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abadi, F., Gimenez, O., Arlettaz, R., and Schaub, M. (2010), “An assessment of integrated population models: bias, accuracy, and violation of the assumption of independence”, Ecology, 91, 7-14. · doi:10.1890/08-2235.1
[2] Abadi, F., Gimenez, O., Ullrich, B., Arlettaz, R., and Schaub, M. (2010), “Estimation of immigration rate using integrated population models”, Journal of Applied Ecology, 47, 393-400. · doi:10.1111/j.1365-2664.2010.01789.x
[3] Besbeas, P.; Borysiewicz, RS; Morgan, BJT; Thomson, DL (ed.); Cooch, EG (ed.); Conroy, MJ (ed.), Completing the ecological jigsaw, No. 3 (2009), New York
[4] Besbeas, P., Freeman, S. N., Morgan, B. J. T., and Catchpole, E. A. (2002), “Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters”, Biometrics, 58, 540-547. · Zbl 1210.62223 · doi:10.1111/j.0006-341X.2002.00540.x
[5] Besbeas, P., and Morgan, B. J. T. (2014), “Goodness-of-fit of integrated population models using calibrated simulation”, Methods in Ecology and Evolution, 5, 1373-1382. · doi:10.1111/2041-210X.12279
[6] Buckland, S. T., Newman, K. B., Thomas, L., and Koesters, N. B. (2004), “State-space models for the dynamics of wild animal populations”, Ecological Modelling, 171, 157-175. · doi:10.1016/j.ecolmodel.2003.08.002
[7] Burnham, KP; Lebreton, J-D (ed.); North, PM (ed.), A theory for combined analysis of ring recovery and recapture data, 199-213 (1993), Basel
[8] Cave, V. M., King, R., and Freeman, S. N. (2010), “An integrated population model from constant effort bird-ringing data”, Journal of Agricultural, Biological, and Environmental Statistics, 15, 119-137. · Zbl 1306.62256 · doi:10.1007/s13253-009-0001-2
[9] Cole, D. J., and McCrea, R. S. (2016), “Parameter redundancy in discrete state-space and integrated models”, Biometrical Journal, 58, 1071-1090. · Zbl 1358.62091 · doi:10.1002/bimj.201400239
[10] Freckleton, R. P., Watkinson, A. R., Green, R. E., and Sutherland, W. J. (2006), “Census error and the detection of density dependence”, Journal of Animal Ecology, 75, 837-851. · doi:10.1111/j.1365-2656.2006.01121.x
[11] Gaston, A. J., and Jones, I. L. (1998), The Auks. Oxford University Press.
[12] Gelman, A. (2006), “Prior distributions for variance parameters in hierarchical models (comment on an Article by Browne and Draper)”, Bayesian Analysis, 1, 515-533. · Zbl 1331.62139 · doi:10.1214/06-BA117A
[13] Gelman, A., and Rubin, D. B. (1992), “Inference from iterative simulation using multiple sequences”, Statistical Science, 7, 457-472. · Zbl 1386.65060 · doi:10.1214/ss/1177011136
[14] Halley, D. J., and Harris, M. P. (1993), “Intercolony movement and behaviour of immature guillemots <Emphasis Type=”Italic“>Uria aalge”, Ibis, 135, 264-270. · doi:10.1111/j.1474-919X.1993.tb02843.x
[15] Harris, M. P., Frederiksen, M., and Wanless, S. (2007), “Within- and between-year variation in the juvenile survival of common guillemots <Emphasis Type=”Italic“>Uria aalge”, Ibis, 149, 472-481. · doi:10.1111/j.1474-919X.2007.00667.x
[16] Harris, M. P., Halley, D. J., and Swann, R. L. (1994), “Age of 1st breeding in common murres”, Auk, 111, 207-209. · doi:10.2307/4088526
[17] Harris, M. P., Halley, D. J., and Wanless, S. (1996), “Philopatry in the common guillemot <Emphasis Type=”Italic“>Uria aalge”, Bird Study, 43, 134-137. · doi:10.1080/00063659609461005
[18] Harris, M. P., and Wanless, S. (1988), “The breeding biology of Guillemots <Emphasis Type=”Italic“>Uria aalge on the Isle of May over a six year period”, Ibis, 130, 172-192. · doi:10.1111/j.1474-919X.1988.tb00969.x
[19] ——- (1989), “The breeding biology of Razorbills <Emphasis Type=”Italic“>Alca torda on the Isle of May”, Bird Study, 36, 105-114. · doi:10.1080/00063658909477012
[20] ——- (2011), The Puffin, London: T. & A.D. Poyser.
[21] Harris, M. P., Heubeck, M., Newell, M. A., and Wanless, S. (2015), “The need for year-specific correction factors (k values) when converting counts of individual Common Guillemots <Emphasis Type=”Italic“>Uria aalge to breeding pairs”, Bird Study, 62, 276-279. · doi:10.1080/00063657.2015.1017444
[22] Lahoz-Monfort, J. J., Harris, M. P., Morgan, B. J. T., Freeman, S. N., and Wanless, S. (2014), “Exploring the consequences of reducing survey effort for detecting individual and temporal variability in survival”, Journal of Applied Ecology, 51, 534-543. · doi:10.1111/1365-2664.12214
[23] Lahoz-Monfort, J. J., Morgan, B. J. T., Harris, M. P., Daunt, F., Wanless, S., and Freeman, S. N. (2013), “Breeding together: modeling synchrony in productivity in a seabird community”, Ecology, 94, 3-10. · doi:10.1890/12-0500.1
[24] Lahoz-Monfort, J. J., Morgan, B. J. T., Harris, M. P., Wanless, S., and Freeman, S. N. (2011), “A capture-recapture model for exploring multi-species synchrony in survival”, Methods in Ecology and Evolution, 2, 116-124. · doi:10.1111/j.2041-210X.2010.00050.x
[25] Lloyd, C. (1974), “Movement and survival of British razorbills”, Bird Study, 21, 102-116. · doi:10.1080/00063657409476406
[26] Lloyd, C. S., and Perrins, C. M. (1977), “Survival and age of first breeding in the razorbill (<Emphasis Type=”Italic“>Alca torda)”, Bird-Banding 48, 239-252.
[27] McCarthy, M. A. (2011), “Breathing some air into the single-species vacuum: multi-species responses to environmental change”, Journal of Animal Ecology, 80, 1-3. · doi:10.1111/j.1365-2656.2010.01782.x
[28] McCrea, R. S. (2012), “Sufficient statistic likelihood construction for age- and time-dependent multi-state joint recapture and recovery data”, Statistics and Probability Letters, 82, 357-359. · doi:10.1016/j.spl.2011.10.020
[29] McCrea, R. S., and Morgan, B. J. T. (2015), Analysis of Capture-Recapture Data, Boca Raton, FL: CRC Press. · Zbl 1331.92001
[30] Péron, G., and Koons, D. N. (2012), “Integrated modeling of communities: parasitism, competition, and demographic synchrony in sympatric ducks”, Ecology, 93, 2456-2464. · doi:10.1890/11-1881.1
[31] Plummer, M. 2003. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Paper read at 3rd International Workshop on Distributed Statistical Computing, March 20-22, at Vienna, Austria.
[32] Plummer, M., Best, N., Cowles, K, and Vines, K. (2006), “CODA: convergence diagnosis and output analysis for MCMC”, R News, 6, 7-11.
[33] Reed, T. E., Harris, M. P., and Wanless, S. (2015), “Skipped breeding in common guillemots in a changing climate: restraint or constraint?”, Frontiers in Ecology and Evolution, 3.
[34] Reynolds, T. J., King, R., Harwood, J., Frederiksen, M., Harris, M. P., and Wanless, S. (2009), “Integrated data analysis in the presence of emigration and mark loss”, Journal of Agricultural Biological and Environmental Statistics, 14, 411-431. · Zbl 1306.62326 · doi:10.1198/jabes.2009.08008
[35] Robinson, R. A., Grantham, M. J., and Clark, J. A. (2009), “Declining rates of ring recovery in British birds”, Ringing & Migration, 24, 266-272. · doi:10.1080/03078698.2009.9674401
[36] Schaub, M., and Kéry, M. (2012), “Combining information in hierarchical models improves inferences in population ecology and demographic population analyses”, Animal Conservation, 15, 125-126. · doi:10.1111/j.1469-1795.2012.00531.x
[37] Schaub, M., von Hirschheydt, J., and Grüebler, M. U. (2015), “Differential contribution of demographic rate synchrony to population synchrony in barn swallows”, Journal of Animal Ecology, 84, 1530-1541. · doi:10.1111/1365-2656.12423
[38] Swallow, B., King, R., Buckland, S. T., and Toms, M. P. (2016), “Identifying multispecies synchrony in response to environmental covariates”, Ecology and Evolution, 6, 8515-8525. · doi:10.1002/ece3.2518
[39] White, G. C., and Burnham, K. P. (1999), “Program MARK: survival estimation from populations of marked animals.”, Bird Study, 46 (Suppl.), 120-139.
[40] Williams, B. K., Nichols, J. D., and Conroy, M. J. (2002), Analysis and management of animal populations, San Diego: Academic Press.
[41] Wooller, R. D., Bradley, J. S., and Croxall, J. P. (1992), “Long-term population studies of seabirds”, Trends in Ecology & Evolution, 7, 111-114. · doi:10.1016/0169-5347(92)90143-Y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.