×

A novel solver for the generalized Riemann problem based on a simplified LeFloch-Raviart expansion and a local space-time discontinuous Galerkin formulation. (English) Zbl 1368.65155

Summary: In a wide class of high order shock-capturing methods for hyperbolic conservation laws, the solution of the conservation law is represented at each time-step by a piecewise smooth function (say, a polynomial reconstructed from cell-averages or an approximation in a finite element space). To maintain a sharp resolution of shock waves, jumps at the cell boundaries are allowed. The resulting initial value problem with piecewise smooth but discontinuous initial data is called the generalized Riemann problem. We present a new solver for the generalized Riemann problem based on a simplified version of a local asymptotic series expansion constructed by P. Le Floch and P.-A. Raviart [Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5, No. 2, 179–207 (1988; Zbl 0679.35064)]. Contrary to the original approach, in our new solver no higher order flux derivatives and other nonlinear terms need to be computed. Moreover, we introduce a new variant of the local space-time DG method of the second author et al. [J. Comput. Phys. 227, No. 8, 3971–4001 (2008; Zbl 1142.65070)], that allows us to use a direct solution strategy for the generalized Riemann problem without relying on a Cauchy-Kovalevskaya procedure for the flux computation.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws

Software:

ECHO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balsara, D.: Total variation diminishing scheme for relativistic magneto-hydrodynamics. Astrophys. J. Suppl. Ser. 132, 83-101 (2001) · doi:10.1086/318941
[2] Balsara, D., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405-452 (2000) · Zbl 0961.65078 · doi:10.1006/jcph.2000.6443
[3] Barton, P.T., Drikakis, D., Romenski, E., Titarev, V.A.: Exact and approximate solutions of riemann problems in non-linear elasticity. J. Comput. Phys. 228, 7046-7068 (2009) · Zbl 1172.74032 · doi:10.1016/j.jcp.2009.06.014
[4] Ben-Artzi, M., Falcovitz, J.: A second-order Godunov-type scheme for compressible fluid dynamics. J. Comput. Phys. 55, 1-32 (1984) · Zbl 0535.76070 · doi:10.1016/0021-9991(84)90013-5
[5] Bourgeade, A., LeFloch, P., Raviart, P.A.: An asymptotic expansion for the solution of the generalized riemann problem. Part II: application to the gas dynamics equations. Ann. Inst. Henri Poincaré (C) Anal. Non Linéaire 6, 437-480 (1989) · Zbl 0703.35106
[6] Bressan, A.: Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem. Oxford University Press, Oxford (2000) · Zbl 0997.35002
[7] Castro, C.C., Toro, E.F.: Solvers for the high-order riemann problem for hyperbolic balance laws. J. Comput. Phys. 227, 2481-2513 (2008) · Zbl 1148.65066 · doi:10.1016/j.jcp.2007.11.013
[8] Chung, E.T., Lee, C.S.: A staggered discontinuous galerkin method for the convection-diffusion equation. J. Numer. Math. 20, 1-31 (2012) · Zbl 1300.65065 · doi:10.1515/jnum-2012-0001
[9] Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545-581 (1990) · Zbl 0695.65066
[10] Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90-113 (1989) · Zbl 0677.65093 · doi:10.1016/0021-9991(89)90183-6
[11] Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199-224 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[12] Colella, Phillip, Woodward, Paul R.: The piecewise parabolic method (ppm) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174-201 (1984) · Zbl 0531.76082 · doi:10.1016/0021-9991(84)90143-8
[13] Del Zanna, L., Bucciantini, N., Londrillo, P.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics. Astron. Astrophys. 400, 397-413 (2003) · Zbl 1222.76122 · doi:10.1051/0004-6361:20021641
[14] Del Zanna, L., Zanotti, O., Bucciantini, N., Londrillo, P.: ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics. Astron. Astrophys. 473, 11-30 (2007) · doi:10.1051/0004-6361:20077093
[15] Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209-8253 (2008) · Zbl 1147.65075 · doi:10.1016/j.jcp.2008.05.025
[16] Dumbser, M., Casulli, V.: A staggered semi-implicit spectral discontinuous galerkin scheme for the shallow water equations. Appl. Math. Comput. 219, 8057-8077 (2013) · Zbl 1366.76050 · doi:10.1016/j.amc.2013.02.041
[17] Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971-4001 (2008) · Zbl 1142.65070 · doi:10.1016/j.jcp.2007.12.005
[18] Dumbser, M., Kaeser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693-723 (2007) · Zbl 1110.65077 · doi:10.1016/j.jcp.2006.06.043
[19] Dumbser, M., Zanotti, O.: Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys. 228, 6991-7006 (2009) · Zbl 1261.76028 · doi:10.1016/j.jcp.2009.06.009
[20] Einfeldt, B.: On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25, 294-318 (1988) · Zbl 0642.76088 · doi:10.1137/0725021
[21] Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On godunov-type methods near low densities. J. Comput. Phys. 92, 273-295 (1991) · Zbl 0709.76102 · doi:10.1016/0021-9991(91)90211-3
[22] Le Floch, P., Raviart, P.A.: An asymptotic expansion for the solution of the generalized riemann problem. Part I: General theory. Ann. Inst. Henri Poincaré (C) Anal. Non linéaire 5, 179-207 (1988) · Zbl 0679.35064
[23] Dumbser, M., Montecinos, G., Castro, C., Toro, E.F.: Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms. J. Comput. Phys. 231, 6472-6494 (2012) · Zbl 1284.35268 · doi:10.1016/j.jcp.2012.06.011
[24] Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230, 4232-4247 (2011) · Zbl 1220.65122 · doi:10.1016/j.jcp.2010.10.024
[25] Gassner, G., Lörcher, F., Munz, C.D.: A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34, 260-286 (2008) · Zbl 1218.76027 · doi:10.1007/s10915-007-9169-1
[26] Giacomazzo, B., Rezzolla, L.: The exact solution of the Riemann problem in relativistic magnetohydrodynamics. J. Fluid Mech. 562, 223-259 (2006) · Zbl 1097.76073 · doi:10.1017/S0022112006001145
[27] Godunov, S.K., Romenski, E.I.: Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates. J. Appl. Mech. Tech. Phys. 13, 868-885 (1972) · doi:10.1007/BF01200547
[28] Godunov S.K., Romenski, E.I.: Thermodynamics, conservation laws, and symmetric forms of differential equations in mechanics of continuous media. In: Computational Fluid Dynamics Review 95, pp. 19-31. Wiley, New York (1995) · Zbl 0875.73025
[29] Goetz, C.R. (2013) Approximate solutions of generalized Riemann problems for hyperbolic conservtaion laws and their application to high order finite volume schemes. PhD thesis, University of Hamburg · Zbl 1218.76027
[30] Goetz, C.R., Iske, A.: Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws. Math. Comput. 85, 35-62 (2016) · Zbl 1325.65128 · doi:10.1090/mcom/2970
[31] Harabetian, E.: A convergent series expansion for hyperbolic systems of conservation laws. Trans. Am. Math. Soc. 294, 383-424 (1986) · Zbl 0599.35103 · doi:10.1090/S0002-9947-1986-0825712-4
[32] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes. III. J. Comput. Phys. 71, 231-303 (1987) · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[33] Hidalgo, A., Dumbser, M.: ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations. J. Sci. Comput. 48, 173-189 (2011) · Zbl 1221.65231 · doi:10.1007/s10915-010-9426-6
[34] Jiang, Guang-Shan, Shu, Chi-Wang: Efficient implementation of weighted eno schemes. J. Comput. Phys 126, 202-228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[35] Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10(4), 537-566 (1957) · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[36] Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159-193 (1954) · Zbl 0055.19404 · doi:10.1002/cpa.3160070112
[37] Li, T., Yu, W.: Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke University Press, Durham (1985) · Zbl 0627.35001
[38] Liu, Y.J., Shu, C.W., Tadmor, E., Zhang, M.: Central discontinuous galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45, 2442-2467 (2007) · Zbl 1157.65450 · doi:10.1137/060666974
[39] Lörcher, F., Gassner, G., Munz, C.D.: A discontinuous Galerkin scheme based on a space-time expansion. I. inviscid compressible flow in one space dimension. J. Sci. Comput. 32, 175-199 (2007) · Zbl 1143.76047 · doi:10.1007/s10915-007-9128-x
[40] Qian, J., Li, J., Wang, S.: The generalized riemann problems for compressible fluid flows: towards high order. J. Comput. Phys. 259, 358-389 (2014) · Zbl 1349.76379 · doi:10.1016/j.jcp.2013.12.002
[41] Rezzolla, L., Zanotti, O.: An improved exact riemann solver for relativistic hydrodynamics. J. Fluid Mech. 449, 395-411 (2001) · Zbl 1009.76101 · doi:10.1017/S0022112001006450
[42] Roe, P.L.: Approximate riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357 (1981) · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[43] Shu, C.W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[44] Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1-31 (1978) · Zbl 0387.76063 · doi:10.1016/0021-9991(78)90023-2
[45] Tatsien, L., Libin, W.: Global Propagation of Regular Nonlinear Hyperbolic Waves. Brikhäuser, Boston (2009) · Zbl 1179.35006 · doi:10.1007/b78335
[46] Tavelli, M., Dumbser, M.: A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations. Appl. Math. Comput. 248, 70-92 (2014) · Zbl 1338.76068 · doi:10.1016/j.amc.2014.09.089
[47] Tavelli, M., Dumbser, M.: A staggered space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations on two-dimensional triangular meshes. Comput. Fluids 119, 235-249 (2015) · Zbl 1390.76360 · doi:10.1016/j.compfluid.2015.07.003
[48] Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17, 609 (2002) · Zbl 1024.76028 · doi:10.1023/A:1015126814947
[49] Titarev, V.A., Romenski, E.I., Toro, E.F.: MUSTA-type upwind fluxes for non-linear elasticity. Int. J. Numer. Meth. Eng. 73, 897-926 (2008) · Zbl 1159.74046 · doi:10.1002/nme.2096
[50] Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys. 204, 715-736 (2005) · Zbl 1060.65641 · doi:10.1016/j.jcp.2004.10.028
[51] Toro, E.F., Titarev, V.A.: Solution of the generalized riemann problem for advection-reaction equations. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 458, no. 2018, pp. 271-281 (2002) · Zbl 1019.35061
[52] Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212(1), 150-165 (2006) · Zbl 1087.65590 · doi:10.1016/j.jcp.2005.06.018
[53] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd edn. Springer, Berlin (1999) · Zbl 0923.76004 · doi:10.1007/978-3-662-03915-1
[54] Toro, E.F.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, Chichester (2001) · Zbl 0996.76003
[55] Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the Harten-Lax-van Leer Riemann solver. J. Shock Waves 4, 25-34 (1994) · Zbl 0811.76053 · doi:10.1007/BF01414629
[56] Toro, E.F., Titarev, V.A.: TVD fluxes for the high-order ADER schemes. J. Sci. Comput. 24, 285-309 (2005) · Zbl 1096.76029 · doi:10.1007/s10915-004-4790-8
[57] van Leer, Bram: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101-136 (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.