×

An asymptotic approximation for TCP compound. (English) Zbl 1409.68062

Summary: In this paper, we derive an approximation for throughput of TCP Compound connections under random losses. Throughput expressions for TCP Compound under a deterministic loss model exist in the literature. These are obtained assuming that the window sizes are continuous, i.e., a fluid behavior is assumed. We validate this model theoretically. We show that under the deterministic loss model, the TCP window evolution for TCP Compound is asymptotically periodic and is independent of the initial window size. We then consider the case when packets are lost randomly and independently of each other. We discuss Markov chain models to analyze performance of TCP in this scenario. We use insights from the deterministic loss model to get an appropriate scaling for the window size process and show that these scaled processes, indexed by \(p\), the packet error rate, converge to a limit Markov chain process as \(p\) goes to 0. We show the existence and uniqueness of the stationary distribution for this limit process. Using the stationary distribution for the limit process, we obtain approximations for throughput, under random losses, for TCP Compound when packet error rates are small. We compare our results with ns2 simulations which show a good match and a better approximation than the fluid model at low \(p\).

MSC:

68M20 Performance evaluation, queueing, and scheduling in the context of computer systems

Software:

CUBIC
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control. RFC 2581 (Proposed Standard) (1999)
[2] Altman, E., Avrachenkov, K., Barakat, C.: A stochastic model of TCP/IP with stationary random losses. SIGCOMM Comput. Commun. Rev. 30(4), 231-242 (2000) · doi:10.1145/347057.347549
[3] Asmussen, S.; Devroye, L. (ed.); Gyorfi, L. (ed.); Lugosi, G. (ed.), Applied probability and queues, No. 51 (2003), New York · Zbl 1029.60001
[4] Athreya, K., Lahiri, S.: Measure Theory and Probability Theory. Springer Texts in Statistics. Springer, New York (2006) · Zbl 1130.60001
[5] Balakrishnan, H., Padmanabhan, V.N., Seshan, S., Katz, R.H.: A comparison of mechanisms for improving TCP performance over wireless links. IEEE/ACM Trans. Netw. 5(6), 756-769 (1997) · doi:10.1109/90.650137
[6] Blanc, A., Avrachenkov, K., Collange, D., Neglia, G.: Compound TCP with Random Losses. In: Proceedings of the 8th International IFIP-TC 6 Networking Conference. NETWORKING ’09, pp. 482-494. Springer, Heidelberg (2009)
[7] Borman, D., Scheffenegger, R., Jacobson, V.: TCP extensions for high performance. RFC 7323 (2014)
[8] Cardwell, N., Savage, S., Anderson, T.: Modeling TCP latency. In: IEEE Infocom, pp. 1724-1751 (2000)
[9] Chavan, S., Raina, G.: Performance of TCP with a Proportional Integral Enhanced (PIE) queue management policy. In: 2015 27th Chinese Control and Decision Conference (CCDC), pp. 1013-1018 (2015)
[10] Dumas, V., Guillemin, F., Robert, P.: A Markovian analysis of additive-increase multiplicative-decrease algorithms. Adv. Appl. Probab. 34(1), 85-111 (2002) · Zbl 1002.60091 · doi:10.1017/S000186780001140X
[11] Enachescu, M., Ganjali, Y., Goel, A., McKeown, N., Roughgarden, T.: Part III: routers with very small buffers. ACM SIGCOMM Comput. Commun. Rev. 35(3), 83-90 (2005) · doi:10.1145/1070873.1070886
[12] Floyd, S.: HighSpeed TCP for Large Congestion Windows. RFC 3649 (Experimental) (2003)
[13] Floyd, S., Henderson, T.: The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 2582 (Experimental) (1999)
[14] Floyd, S., Henderson, T., Gurtov, A.: The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 3782 (Proposed Standard) (2004) · Zbl 1002.60091
[15] Gettys, J., Nichols, K.: Bufferbloat: dark buffers in the internet. Queue 9(11), 40 (2011) · doi:10.1145/2063166.2071893
[16] Ghosh, D., Jagannathan, K., Raina, G.: Right buffer sizing matters: stability, queuing delay and traffic burstiness in compound TCP. In: 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton 2014), pp. 1132-1139 (2014) · Zbl 1137.93307
[17] Gupta, A., Sharma, V.: A unified approach for analyzing persistent, non-persistent and ON-OFF TCP sessions in the internet. Perform. Eval. 63(2), 79-98 (2006) · doi:10.1016/j.peva.2004.12.003
[18] Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42, 64-74 (2008) · doi:10.1145/1400097.1400105
[19] Huston, G.: Gigabit TCP. Internet Protoc. J. 2, 64-69 (2006)
[20] Kelly, T.: Scalable TCP: improving performance in highspeed wide area networks. SIGCOMM Comput. Commun. Rev. 33(2), 83-91 (2003) · doi:10.1145/956981.956989
[21] Lakshman, T.V., Madhow, U.: The performance of TCP/IP for networks with high bandwidth-delay products and random loss. IEEE/ACM Trans. Netw. 5, 336-350 (1997) · doi:10.1109/90.611099
[22] Manjunath, S., Raina, G.: Analyses of compound TCP with random early detection (RED) queue management. In: 2015 27th Chinese Control and Decision Conference (CCDC), pp. 5334-5339 (2015)
[23] Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the TCP congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev. 27, 67-82 (1997) · doi:10.1145/263932.264023
[24] Mills, K.L., Filliben, J.J., Cho, D.Y., Schwartz, E., Genin, D.: Study of Proposed Internet Congestion Control Mechanisms. DIANE, New York (2011)
[25] Misra, V.; Gong, WB; Towsley, D., Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED, No. 30, 151-160 (2000), New York
[26] Nichols, K., Jacobson, V.: Controlling queue delay. Commun. ACM 55(7), 42-50 (2012) · doi:10.1145/2209249.2209264
[27] Padhye, J., Firoiu, V., Towsley, D.F., Kurose, J.F.: Modeling TCP reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw. 8, 133-145 (2000) · doi:10.1109/90.842137
[28] Poojary, S., Sharma, V.: Theoretical analysis of high-speed multiple TCP connections through multiple routers. In: ICC. IEEE, Piscataway (2013)
[29] Raina, G., Towsley, D., Wischik, D.: Part II: control theory for buffer sizing. ACM SIGCOMM Comput. Commun. Rev. 35(3), 79-82 (2005) · doi:10.1145/1070873.1070885
[30] Shakkottai, S., Srikant, R.: How good are deterministic fluid models of internet congestion control? In: IEEE Infocom, vol. 2, pp. 497-505 (2002)
[31] Sharma, V., Purkayastha, P.: Stability and analysis of TCP connections with RED control and exogenous traffic. Queueing Syst. Theory Appl. 48, 193-235 (2004) · Zbl 1059.90030 · doi:10.1023/B:QUES.0000046577.60154.e9
[32] Shorten, R., King, C., Wirth, F., Leith, D.: Modelling TCP congestion control dynamics in drop-tail environments. Automatica 43(3), 441-449 (2007) · Zbl 1137.93307 · doi:10.1016/j.automatica.2006.07.026
[33] Shorten, R.N., Leith, D.J.: H-TCP: TCP for high-speed and long-distance networks. In: Proceedings PFLDnet, Argonne (2004)
[34] Talbot, D.: A Bandwidth Breakthrough. https://www.technologyreview.com/s/429722/a-bandwidth-breakthrough/. Accessed 14 Oct 2016
[35] Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. In: IEEE Infocom (2006)
[36] Tweedie, R.: The existence of moments for stationary Markov chains. J. Appl. Probab. 6, 191-196 (1983) · Zbl 0513.60067 · doi:10.1017/S0021900200097072
[37] Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14(6), 1246-1259 (2006) · doi:10.1109/TNET.2006.886335
[38] Wischik, D., McKeown, N.: Part I: buffer sizes for core routers. ACM SIGCOMM Comput. Commun. Rev. 35(3), 75-78 (2005) · doi:10.1145/1070873.1070884
[39] Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks. In: IEEE Infocom (2004)
[40] Yang, P., Shao, J., Luo, W., Xu, L., Deogun, J., Lu, Y.: TCP congestion avoidance algorithm identification. IEEE/ACM Trans. Netw. 22(4), 1311-1324 (2014) · doi:10.1109/TNET.2013.2278271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.