×

A simplified enhanced MPFA formulation for the elliptic equation on general grids. (English) Zbl 1371.65115

Summary: Multi-point flux approximation (MPFA) has proven to be a powerful tool for discretizing the diffusion equation on general grids with heterogeneous anisotropic permeability tensors and hence, removing the \(O(1)\) error introduced by two-point flux approximation (TPFA) for non-K-orthogonal grids. However, it is well known that the classical MPFA-O suffers from monotonicity issues and strong unphysical oscillations can be present for highly anisotropic media. Enriched MPFA (EMPFA) and MPFA with full pressure support (FPS) have been proposed in the literature to reduce the strength of the oscillations. In this work, we present a simplified enhanced MPFA formulation (eMPFA) on general grids in 2D. Similar to the MPFA-O method, our formulation starts with an interaction region formed around the vertex of control volumes. Potential at the vertex is introduced as an auxiliary unknown in addition to potential at the centroids of the control volume faces. The original EMPFA and FPS solve the diffusion equation on a small volume around the vertex to close the local system of equations. To simplify the formulation, we propose an average technique to approximate potential at the vertex. Utilizing the potential value at the vertex, full potential continuity can be imposed on control volume faces to construct a more accurate flux across control volume faces. Extensive numerical experiments are conducted to test the eMPFA formulation. Specifically, we compare eMPFA with MPFA-O and two variants of EMPFA in detail. The results show that our average technique is quite robust even for highly distorted quadrilateral grids with large permeability anisotropy ratios and solutions of our formulation are in excellent agreement with EMPFA using bilinear pressure support. The new scheme also reproduces linear potential solutions and has comparable, and in some cases even better, convergence properties to those of the MPFA-O method. Finally, we generalize the formulation to include structured and unstructured triangular and polygonal grids and present the results.

MSC:

65N08 Finite volume methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs

Software:

MRST-AD; DistMesh; MRST
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aziz, K., Settari, A.: Petroleum reservoir simulation. Chapman & Hall (1979) · Zbl 1391.76341
[2] Aavatsmark, I., Barkve, T., Bœ, Ø., Mannseth, T.: Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127(1), 2-14 (1996) · Zbl 0859.76048 · doi:10.1006/jcph.1996.0154
[3] Avaatsmark, I., Barkve, T., Bœ, Ø., Mannseth, T.: A class of discretization methods for structured and unstructured grids in anisotropic, inhomogeneous media 5th European Conference on the Mathematics of Oil Recovery (1996) · Zbl 0951.65080
[4] Aavatsmark, I., Barkve, T., Bœ, O., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results. SIAM J. Sci. Comput. 19(5), 1717-1736 (1998) · Zbl 0951.65082 · doi:10.1137/S1064827595293594
[5] Aavatsmark, I., Barkve, T., Bœ, O., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J. Sci. Comput. 19(5), 1700-1716 (1998) · Zbl 0951.65080 · doi:10.1137/S1064827595293582
[6] Aavatsmark, I., Barkve, T., Mannseth, T.: Control-volume discretization methods for 3D quadrilateral grids in inhomogeneous, anisotropic reservoirs. SPE J. 3(02), 146-154 (1998) · Zbl 0951.65080 · doi:10.2118/38000-PA
[7] Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2(4), 259-290 (1998) · Zbl 0945.76049 · doi:10.1023/A:1011510505406
[8] Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6(3-4), 405-432 (2002) · Zbl 1094.76550 · doi:10.1023/A:1021291114475
[9] Edwards, M.G.: Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids. Comput. Geosci. 6(3-4), 433-452 (2002) · Zbl 1036.76034 · doi:10.1023/A:1021243231313
[10] Edwards, M.G.: M-matrix flux splitting for general full tensor discretization operators on structured and unstructured grids. J. Comput. Phys. 160(1), 1-28 (2000) · Zbl 0983.76055 · doi:10.1006/jcph.2000.6418
[11] Verma, S., Aziz, K.: A control volume scheme for flexible grids in reservoir simulation SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (1997)
[12] Lee, S., Durlofsky, L., Lough, M., Chen, W.: Finite difference simulation of geologically complex reservoirs with tensor permeabilities SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (1997) · Zbl 1333.76084
[13] Lee, S.H., Tchelepi, H.A., Jenny, P., DeChant, L.J.: Implementation of a flux-continuous finite-difference method for stratigraphic, hexahedron grids. SPE J. 7(03), 267-277 (2002) · doi:10.2118/80117-PA
[14] Eigestad, G.T., Klausen, R.A.: On the convergence of the multi-point flux approximation O-method: numerical experiments for discontinuous permeability. Numerical Methods for Partial Differential Equations 21(6), 1079-1098 (2005) · Zbl 1089.76037 · doi:10.1002/num.20079
[15] Pal, M., Edwards, M.G., Lamb, A.R.: Convergence study of a family of flux-continuous, finite-volume schemes for the general tensor pressure equation. Int. J. Numer. Meth. Fluids 51, 1177-1203 (2006) · Zbl 1108.76046 · doi:10.1002/fld.1211
[16] Aavatsmark, I., Eigestad, G., Klausen, R.A.: Numerical convergence of the MPFA O-method for general quadrilateral grids in two and three dimensions Compatible spatial discretizations, pp 1-21. Springer (2006) · Zbl 1110.65106
[17] Aavatsmark, I., Eigestad, G.T., Klausen, R.A., Wheeler, M.F., Yotov, I.: Convergence of a symmetric MPFA method on quadrilateral grids. Comput. Geosci. 11(4), 333-345 (2007) · Zbl 1128.65093 · doi:10.1007/s10596-007-9056-8
[18] Klausen, R.A., Winther, R.: Convergence of multipoint flux approximations on quadrilateral grids. Numerical Methods for Partial Differential Equations 22(6), 1438-1454 (2006) · Zbl 1106.76043 · doi:10.1002/num.20158
[19] Klausen, R.A., Winther, R.: Robust convergence of multi point flux approximation on rough grids. Numer. Math. 104(3), 317-337 (2006) · Zbl 1102.76036 · doi:10.1007/s00211-006-0023-4
[20] Klausen, R.A., Radu, F.A., Eigestad, G.T.: Convergence of MPFA on triangulations and for Richards’ equation. Int. J. Numer. Methods Fluids 58(12), 1327-1351 (2008) · Zbl 1391.76341 · doi:10.1002/fld.1787
[21] Eigestad, G.T., Aavatsmark, I., Espedal, M.: Symmetry and M-matrix issues for the O-method on an unstructured grid. Comput. Geosci. 6(3-4), 381-404 (2002) · Zbl 1094.76551 · doi:10.1023/A:1021239130404
[22] Nordbotten, J.M., Aavatsmark, I.: Monotonicity conditions for control volume methods on uniform parallelogram grids in homogeneous media. Comput. Geosci. 9(1), 61-72 (2005) · doi:10.1007/s10596-005-5665-2
[23] Nordbotten, J.M., Aavatsmark, I., Eigestad, G.T.: Monotonicity of control volume methods. Numer. Math. 106(2), 255-288 (2007) · Zbl 1215.76090 · doi:10.1007/s00211-006-0060-z
[24] Keilegavlen, E., Aavatsmark, I.: Monotonicity for MPFA methods on triangular grids. Comput. Geosci. 15 (1), 3-16 (2011) · Zbl 1333.76084 · doi:10.1007/s10596-010-9191-5
[25] Nordbotten, J.M., Eigestad, G.T.: Discretization on quadrilateral grids with improved monotonicity properties. J. Comput. Phys. 203(2), 744-760 (2005) · Zbl 1143.76540 · doi:10.1016/j.jcp.2004.10.002
[26] Aavatsmark, I., Eigestad, G.T., Mallison, B.T., Nordbotten, J.M.: A compact multipoint flux approximation method with improved robustness. Numerical Methods for Partial Differential Equations 24(5), 1329-1360 (2008) · Zbl 1230.65114 · doi:10.1002/num.20320
[27] Mlacnik, M.J., Durlofsky, L.J.: Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients. J. Comput. Phys. 216(1), 337-361 (2006) · Zbl 1173.76413 · doi:10.1016/j.jcp.2005.12.007
[28] Chen, Q.-Y., Wan, J., Yang, Y., Mifflin, R.T.: Enriched multi-point flux approximation for general grids. J. Comput. Phys. 227(3), 1701-1721 (2008) · Zbl 1221.76123 · doi:10.1016/j.jcp.2007.09.021
[29] Edwards, M.G., Zheng, H.: A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support. J. Comput. Phys. 227(22), 9333-9364 (2008) · Zbl 1231.76178 · doi:10.1016/j.jcp.2008.05.028
[30] Edwards, M.G., Zheng, H.: Quasi-positive families of continuous Darcy-flux finite volume schemes on structured and unstructured grids. J. Comput. Appl. Math. 234(7), 2152-2161 (2010) · Zbl 1402.76078 · doi:10.1016/j.cam.2009.08.078
[31] Edwards, M.G., Zheng, H.: Double-families of quasi-positive Darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids. J. Comput. Phys. 229(3), 594-625 (2010) · Zbl 1253.76091 · doi:10.1016/j.jcp.2009.09.037
[32] Friis, H.A., Edwards, M.G.: A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids. J. Comput. Phys. 230(1), 205-231 (2011) · Zbl 1427.76161 · doi:10.1016/j.jcp.2010.09.012
[33] Crumpton, P., Shaw, G., Ware, A.: Discretisation and multigrid solution of elliptic equations with mixed derivative terms and strongly discontinuous coefficients. J. Comput. Phys. 116(2), 343-358 (1995) · Zbl 0818.65113 · doi:10.1006/jcph.1995.1032
[34] Aavatsmark, I: Multipoint flux approximation methods for quadrilateral grids 9th International forum on reservoir simulation Abu Dhabi (2007)
[35] Aavatsmark, I: Comparison of monotonicity for some multipoint flux approximation methods in Finite Volumes for Complex Applications (2008) · Zbl 1422.65301
[36] Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227(1), 492-512 (2007) · Zbl 1130.65113 · doi:10.1016/j.jcp.2007.08.008
[37] Persson, P.-O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329-345 (2004) · Zbl 1061.65134 · doi:10.1137/S0036144503429121
[38] Krogstad, S., Lie, K.A., Møyner, O., Nilsen, H.M., Raynaud, X., Skaflestad, B.: MRST-AD—an open-source framework for rapid prototyping and evaluation of reservoir simulation problems SPE reservoir simulation symposium. Society of Petroleum Engineers (2015) · Zbl 0945.76049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.