×

The impact of a predator on the outcome of competition in the three-trophic food web. (English) Zbl 1369.92093

Summary: We study the effects of predation on the competition of prey populations for two resources in a chemostat. We investigate a variety of small food web compositions: the bi-trophic food web (two resources – two competing prey) and the three-trophic food web (two resources – two prey – generalist predator) comparing different model formulations: substitutable resources and essential resources, namely Liebig’s minimum law model (perfect essential resources) and complementary resources formulations. The prediction of the outcome of competition is solely based on bifurcation analysis in which the inflow of resources into the chemostat is used as the bifurcation parameter. We show that the results for different bi-trophic food webs are very similar, as only equilibria are involved in the long-term dynamics. In the three-trophic food web, the outcome of competition is manifested largely by non-equilibrium dynamics, i.e., in oscillatory behavior. The emergence of predator-prey cycles leads to strong deviations between the predictions of the outcome of competition based on Liebig’s minimum law and the complementary resources. We show that the complementary resources formulation yields a stabilization of the three-trophic food web by decreasing the existence interval of oscillations. Furthermore, we find an exchange of a region of oscillatory co-existence of all three species in Liebig’s formulation by a region of bistability of two limit cycles containing only one prey and the predator in the complementary formulation.

MSC:

92D25 Population dynamics (general)
92D40 Ecology

Software:

AUTO; MATCONT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Butler, G. J.; Wolkowicz, G. S.K., Predator-mediated competition in the chemostat, J. Math. Biol., 24, 167-191 (1986) · Zbl 0604.92019
[2] Butler, G. J.; Wolkowicz, G. S.K., Predator-mediated competition in the chemostatcoexistence and competition reversal, Math. Model., 8, 781-885 (1987) · Zbl 0621.92020
[3] Caswell, H., Predator-mediated coexistencea nonequilibrium model, Am. Nat., 112, 127-154 (1978)
[4] Cunningham, A.; Nisbet, R. M., Transients and oscillations in continuous culture, (Bazin, M. J., Mathematics in Microbiology (1983), Academic Press: Academic Press London), 77-103 · Zbl 0544.92020
[5] DeAngelis, D. L., Dynamics of Nutrient Cycling and Food Webs Population and Community Biology series 9 (1992), Chapman & Hall: Chapman & Hall London
[6] Dercole, F.; Geritz, S. A.H., Unfolding the resident-invader dynamics of similar strategies, J. Theor. Biol., 394, 231-254 (2015) · Zbl 1343.92404
[7] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., Matconta MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., 29, 141-164 (2003) · Zbl 1070.65574
[8] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.; Meijer, H. G.E.; Sautois, B., New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comp. Model. Dyn., 14, 2, 147-175 (2008) · Zbl 1158.34302
[10] Dutta, P. S.; Kooi, B. W.; Feudel, U., Multiple resource limitationnon-equilibrium coexistence of species in a competition model using a synthesizing unit, Theor. Ecol., 7, 407-421 (2014)
[11] Gause, G. F., The Struggle for Existence (1969), Hafner Publishing: Hafner Publishing New York
[12] Grover, J. P., Resource Competition, Population and Community Biology Series (1997), Chapman & Hall: Chapman & Hall London
[14] Gurney, W. S.C.; Nisbet, R. M., Ecological Dynamics (1998), Oxford University Press: Oxford University Press Oxford · Zbl 0417.92024
[15] Hardin, G., The competitive exclusion principle, Science, 131, 3409, 1292-1297 (1960)
[16] Harpole, W. S.; Ngai, J. T.; Cleland, E. E.; Seabloom, E. W.; Borer, E. T.; Bracken, M. E.S.; Elser, J. J.; Gruner, D. S.; Hillebrand, H.; Shurin, J. B.; Smith, J. E., Nutrient co-limitation of primary producer communities, Ecol. Lett., 14, 852-862 (2011)
[17] Hsu, S.-B.; Cheng, K.-S.; Hubbell, S. P., Exploitative competition of microorganisms for two complementary nutrients in continuous cultures, SIAM J. Appl. Math., 41, 3, 422-444 (1981) · Zbl 0498.92014
[18] Huisman, J.; Weissing, F. J., Biodiversity of plankton by species oscillations and chaos, Nature, 402, 407-410 (1999)
[19] Huisman, J.; Weissing, F. J., Biological conditions for oscillations and chaos generated by multispecies competition, Ecology, 82, 10, 2682-2695 (2001)
[20] Hutchinson, G. E., The paradox of the plankton, Am. Nat., 95, 882, 137-145 (1961)
[21] Huxel, G. R.; McCann, K., Food web stabilitythe influence of trophic flows across habitats, Am. Nat., 152, 3, 460-469 (1998)
[22] Huxel, G. R.; McCann, K.; Polis, G. A., Effects of partitioning allochthonous and autochthonous resources on food web stability, Ecol. Res., 17, 4, 419-432 (2002)
[23] Janse, J. H., A model of ditch vegetation in relation to eutrophication, Water Sci. Technol., 37, 139-149 (1998)
[24] Kooi, B. W.; Kooijman, S. A.L. M., Invading species can stabilize simple trophic systems, Ecol. Model., 133, 1-2, 57-72 (2000)
[25] Kooi, B. W.; Kuijper, L. D.J.; Kooijman, S. A.L. M., Consequence of symbiosis for food web dynamics, J. Math. Biol., 49, 3, 227-271 (2004) · Zbl 1067.92057
[26] Kooi, B. W.; Dutta, P. S.; Feudel, U., Resource competitiona bifurcation theory approach, Math. Model. Nat. Phenom., 8, 165-185 (2013) · Zbl 1290.34055
[27] Kooi, B. W., Numerical bifurcation analysis of ecosystems in a spatially homogeneous environment, Acta Bioth., 51, 3, 189-222 (2003)
[28] Kooijman, S. A.L. M., Dynamic Energy Budget Theory for Metabolic Organisation (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1162.92008
[30] Li, B.; Smith, H. L., How many species can two essential resources support?, SIAM J. Appl. Math., 62, 1, 336-366 (2001) · Zbl 0992.92040
[31] Liebig, J. Von, Die Organische Chemie in ihrer Anwendung auf Agrikultur und Physiologie (1840), Friedrich Vieweg, Braunschweig, Germany
[32] Miller, T. E.; Burns, J. H.; Munguia, P.; Walters, E. L.; Kneitel, J. M.; Richards, P. M.; Mouquet, N.; Buckley, H. L., A critical review of twenty years’ use of the resource-ratio theory, Am. Nat., 165, 4, 439-448 (2005)
[33] Morton, R. D.; Law, R.; Pimm, S. L.; Drake, J. A., On models for assembling ecological communities, Oikos, 75, 3, 493-499 (1996)
[34] O’Neill, R.; DeAngelis, D.; Pastor, J.; Jackson, B.; Post, W., Multiple nutrient limitations in ecological models, Ecol. Model., 46, 147-163 (1989)
[35] Pace, M. L.; Cole, J. J.; Carpenter, S. R.; Kitchell, J. F., Trophic cascades revealed in diverse ecosystems, TREE, 14, 483-488 (1999)
[36] Paine, R. T., Food web complexity and species diversity, Am. Nat., 100, 65-75 (1966)
[37] Rosenzweig, M. L., Paradox of enrichmentdestabilization of exploitation ecosystems in ecological time, Science, 171, 385-387 (1971)
[38] Ryabov, A. B.; Blasius, B., A graphical theory of competition on spatial resource gradients, Ecol. Lett., 14, 220-228 (2011)
[39] Sahoo, B.; Poria, S., Effects of additional food in a delayed predator-prey model, Math. Biosci., 261, 62-73 (2015) · Zbl 1315.92068
[40] Smith, H. L.; Waltman, P., The Theory of the Chemostat: Dynamics of Microbial Competition (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0860.92031
[41] Sperfeld, E.; Martin-Creuzburg, D.; Wacker, A., Multiple resource limitation theory applied to herbivorous consumersLiebig’s minimum rule vs. interactive co-limitation, Ecol. Lett., 15, 142-150 (2012)
[42] Sperfeld, E.; Raubenheimer, D.; Wacker, A., Bridging factorial and gradient concepts of resource co-limitationtowards a general framework applied to consumers, Ecol. Lett., 19, 201-215 (2016)
[43] Sterner, R. W.; Elser, J. J., Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (2002), Princeton University Press: Princeton University Press Princeton
[44] Tilman, D., Resource competition between planktonic algaean experimental and theoretical approach, Ecology, 58, 338-348 (1977)
[45] Tilman, D., Resourcesa graphical-mechanistic approach to competition and predation, Am. Nat., 116, 363-393 (1980)
[46] Tilman, D., Resource Competition and Community Structure (1982), University Press: University Press Princeton
[47] Tilman, D., The resource-ratio hypothesis of plant succession, Am. Nat., 125, 6, 827-852 (1985)
[48] Tilman, D., Dynamics and Structure of Plant Communities (1988), University Press: University Press Princeton
[49] Tilman, D., Niche tradeoffs, neutrality, and community structureA stochastic theory of resource competition, invasion, and community assembly, Proc. Natl. Acad. Sci. USA, 101, 30, 10854-10861 (2004)
[50] Troost, T. A.; Kooi, B. W.; Kooijman, S. A.L. M., Bifurcation analysis of ecological and evolutionary processes in ecosystems, Ecol. Model., 204, 253-268 (2007)
[51] van Gerven, L.; de Klein, J.; Gerla, D.; Kooi, B. W.; Kuiper, J.; Mooij, W., Competition for light and nutrients in layered communities of aquatic plants, Am. Nat., 186, 72-83 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.