×

Integrated planning of spare parts and service engineers with partial backlogging. (English) Zbl 1375.90098

Summary: In this paper, we consider the integrated planning of resources in a service maintenance logistics system in which spare parts supply and service engineers deployment are considered simultaneously. The objective is to determine close-to-optimal stock levels as well as the number of service engineers that minimize the total average costs under a maximum total average waiting time constraint. When a failure occurs, a spare part and a service engineer are requested for the repair call. In case of a stock-out at spare parts inventory, the repair call will be satisfied entirely via an emergency channel with a fast replenishment time but at a high cost. However, if the requested spare part is in stock, the backlogging policy is followed for engineers. We model the problem as a queueing network. An exact method and two approximations for the evaluation of a given policy are presented. We exploit evaluation methods in a greedy heuristic procedure to optimize this integrated planning. In a numerical study, we show that for problems with more than five types of spare parts it is preferable to use approximate evaluations as they become significantly faster than exact evaluation. Moreover, approximation errors decrease as problems get larger. Furthermore, we test how the greedy optimization heuristic performs compared to other discrete search algorithms in terms of total costs and computation times. Finally, in a rather large case study, we show that we may incur up to 27% cost savings when using the integrated planning as compared to a separated optimization.

MSC:

90B25 Reliability, availability, maintenance, inspection in operations research
90B05 Inventory, storage, reservoirs
90B22 Queues and service in operations research
90C59 Approximation methods and heuristics in mathematical programming

Software:

MCQueue
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agnihothri SR, Karmarkar US (1992) Performance evaluation of service territories. Oper Res 40(2):355-366 · Zbl 0825.90442 · doi:10.1287/opre.40.2.355
[2] Agnihothri SR, Mishra AK (2004) Cross-training decisions in field services with three job types and server-job mismatch. Decis Sci 35(2):239-257 · doi:10.1111/j.00117315.2004.02642.x
[3] Agnihothri SR, Mishra AK, Simmons DE (2003) Workforce cross-training decisions in field service systems with two job types. J Oper Res Soc 54(4):410-418 · Zbl 1088.90011 · doi:10.1057/palgrave.jors.2601535
[4] Akşin OZ, Harker PT (2003) Capacity sizing in the presence of a common shared resource: dimensioning an inbound call center. Eur J Oper Res 147(3):464-483 · Zbl 1037.90509 · doi:10.1016/S0377-2217(02)00274-6
[5] Albin SL (1984) Approximating a point process by a renewal process, ii: superposition arrival processes to queues. Oper Res 32(5):1133-1162 · Zbl 0547.90034 · doi:10.1287/opre.32.5.1133
[6] Alfredsson P, Verrijdt J (1999) Modeling emergency supply flexibility in a two-echelon inventory system. Manag. Sci 45(10):1416-1431 · Zbl 1231.90006 · doi:10.1287/mnsc.45.10.1416
[7] Avsar ZM, Zijm WH, Rodoplu U (2009) An approximate model for base-stock-controlled assembly systems. IIE Trans 41(3):260-274 · doi:10.1080/07408170802510382
[8] Axsäter S (1990) Modelling emergency lateral transshipments in inventory systems. Manag Sci 36(11):1329-1338 · Zbl 0727.90021 · doi:10.1287/mnsc.36.11.1329
[9] Basten RJI, van Houtum GJ (2014) System-oriented inventory models for spare parts. Surv Oper Res Manag Sci 19(1):34-55
[10] Benjaafar S, ElHafsi M (2006) Production and inventory control of a single product assemble-to-order system with multiple customer classes. Manag Sci 52(12):1896-1912 · Zbl 1232.90019 · doi:10.1287/mnsc.1060.0588
[11] Brickner C, Indrawan D, Williams D, Chakravarthy SR (2010) Simulation of a stochastic model a service system. In: Proceedings of the 2010 winter simulation conference, pp 1636-1647 · Zbl 1157.90387
[12] Chopra S, Meindl P (2013) Supply chain management: strategy, planning, and operation. Pearson International Edition, Pearson
[13] Dayanik S, Song JS, Xu SH (2003) The effectiveness of several performance bounds for capacitated production, partial-order-service, assemble-to-order systems. Manuf Serv Oper Manag 5(3):230-251 · doi:10.1287/msom.5.3.230.16033
[14] ElHafsi M, Camus H, Craye E (2008) Optimal control of a nested-multiple-product assemble-to-order system. Int J Prod Res 46(19):5367-5392 · Zbl 1157.90387 · doi:10.1080/00207540802273751
[15] Hertz P, Cavalieri S, Finke GR, Duchi A, Schonsleben P (2014) A simulation-based decision support system for industrial field service network planning. Simul-Trans Soc Model Simul Int 90(1):69-84
[16] Heyman DP, Sobel MJ (2003) Stochastic models in operations research: stochastic processes and operating characteristics, vol 1. Courier Corporation, North Chelmsford
[17] Hoen KM, Güllü R, Van Houtum G, Vliegen IM (2011) A simple and accurate approximation for the order fill rates in lost-sales assemble-to-order systems. Int J Prod Econ 133(1):95-104 · doi:10.1016/j.ijpe.2009.12.012
[18] Koole G, Pot A (2006) An overview of routing and staffing algorithms in multi-skill contact centers. Dept of Mathematics, Vrije Universiteit, Amsterdam, pp 1-42
[19] Kranenburg A, Van Houtum G (2009) A new partial pooling structure for spare parts networks. Eur J Oper Res 199(3):908-921 · Zbl 1176.90026 · doi:10.1016/j.ejor.2009.01.057
[20] Kuczura A (1973) The interrupted poisson process as an overflow process. Bell Syst Tech J 52(3):437-448 · Zbl 0251.60065 · doi:10.1002/j.1538-7305.1973.tb01971.x
[21] Kukreja A, Schmidt CP, Miller DM (2001) Stocking decisions for low-usage items in a multilocation inventory system. Manag Sci 47(10):1371-1383 · Zbl 1232.90069 · doi:10.1287/mnsc.47.10.1371.10263
[22] Kutanoglu E (2008) Insights into inventory sharing in service parts logistics systems with time-based service levels. Comput Ind Eng 54(3):341-358 · doi:10.1016/j.cie.2007.07.013
[23] Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modeling, vol 5. Society for Industrial and Applied Mathematics, Philadelphia · Zbl 0922.60001
[24] Lu Y, Song JS, Yao DD (2003) Order fill rate, leadtime variability, and advance demand information in an assemble-to-order system. Oper Res 51(2):292-308 · Zbl 1163.90465 · doi:10.1287/opre.51.2.292.12781
[25] Muckstadt JA (2005) Analysis and algorithms for service parts supply chains. Springer, Berlin · Zbl 1080.90002
[26] Neuts MF (1981) Matrix-geometric solutions in stochastic models: an algorithmic approach. Courier Corporation, North Chelmsford · Zbl 0469.60002
[27] Ormeci EL (2004) Dynamic admission control in a call center with one shared and two dedicated service facilities. IEEE Trans Autom Control 49(7):1157-1161 · Zbl 1365.90260 · doi:10.1109/TAC.2004.831133
[28] Papadopoulos HT (1996) A field service support system using a queueing network model and the priority mva algorithm. Omega-Int J Manag Sci 24(2):195-203 · doi:10.1016/0305-0483(95)00050-X
[29] Sherbrooke CC (1968) Metric: a multi-echelon technique for recoverable item control. Oper Res 16(1):122-141 · doi:10.1287/opre.16.1.122
[30] Sherbrooke CC (2004) Optimal inventory modeling of systems: multi-echelon techniques, vol 72. Springer, Berlin · Zbl 1140.90017
[31] Shumsky RA (2004) Approximation and analysis of a call center with flexible and specialized servers. OR Spectr 26(3):307-330 · Zbl 1109.90025 · doi:10.1007/s00291-004-0163-9
[32] Song JS, Zipkin P (2003) Supply chain operations: assemble-to-order systems. Handb Oper Res Manag Sci 11:561-596 · doi:10.1016/S0927-0507(03)11011-0
[33] Song JS, Xu SH, Liu B (1999) Order-fulfillment performance measures in an assemble-to-order system with stochastic leadtimes. Oper Res 47(1):131-149 · Zbl 1014.90005 · doi:10.1287/opre.47.1.131
[34] Takács L (1962) An introduction to queueing theory. Oxford University Press, New York
[35] Tijms HC (2003) A first course in stochastic models. Wiley, Hoboken · doi:10.1002/047001363X
[36] van Houtum GJ, Kranenburg B (2015) Spare parts inventory control under system availability constraints, vol 227. Springer, Berlin · Zbl 1356.90009 · doi:10.1007/978-1-4899-7609-3
[37] Van Wijk A, Adan IJ, Van Houtum G (2012) Approximate evaluation of multi-location inventory models with lateral transshipments and hold back levels. Eur J Oper Res 218(3):624-635 · Zbl 1244.90027 · doi:10.1016/j.ejor.2011.12.004
[38] Visser J, Howes G (2007) A simulation technique for optimising maintenance teams for a service company. S Afr J Ind Eng 18(2):169-185
[39] Vliegen I (2009) Integrated planning for service tools and spare parts for capital goods. PhD thesis, Technische Universiteit Eindhoven
[40] van Vuuren M (2007) Performance analysis of manufacturing systems: queueing approximations and algorithms. PhD thesis, Technische Universiteit Eindhoven · Zbl 0251.60065
[41] Waller A (1994) A queueing network model for field service support systems. Omega 22(1):35-40 · doi:10.1016/0305-0483(94)90005-1
[42] Whitt W (1983) The queueing network analyzer. Bell Syst Tech J 62(9):2779-2815 · doi:10.1002/j.1538-7305.1983.tb03204.x
[43] Wong H, van Houtum GJ, Cattrysse D, Van Oudheusden D (2005) Simple, efficient heuristics for multi-item multi-location spare parts systems with lateral transshipments and waiting time constraints. J Oper Res Soc 56(12):1419-1430 · Zbl 1142.90314 · doi:10.1057/palgrave.jors.2601952
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.