×

Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization. (English) Zbl 1370.90237

Summary: Due to tremendous losses of resources in modern food supply chains, higher priority should be given to reducing food waste and environmental impacts of food production. In practice, multiple production options are available, but must be quantitatively assessed with respect to economic and environmental performances before they are adopted in food supply chains. The objective of this paper is to develop a mathematical model that can be used for such a quantitative assessment of alternative production options that are associated with different ways to deal with waste in food supply chains, i.e. prevention, recycling, and disposal of food waste. We develop a multi-objective mixed integer linear programming model to derive the set of eco-efficient solutions corresponding to production planning decisions. Environmental performance of the chain is expressed with an indicator based on exergy analysis, which has the potential to capture other commonly used indicators, such as energy consumption, fuel consumption, and waste generation, and express them in a single value. This simplifies the calculation of the eco-efficient frontier, and enables its intuitive graphical representation, which is much easier to communicate to the involved decision makers. The applicability of the developed model is demonstrated on a real-life industrial bread supply chain in the Netherlands. Results confirm the findings from literature that prevention is the best waste management strategy from environmental perspective. The advantages of using exergy as an indicator to capture the environmental performance is demonstrated by comparing the outcomes to other commonly used indicators of environmental performance. We illustrate the potential of studying food production planning decision problems in a multi-objective context, and demonstrate the applicability of the model in the assessment of alternative production options.

MSC:

90C29 Multi-objective and goal programming
90C11 Mixed integer programming
90B30 Production models

Software:

NBI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akkerman, R., Wang, Y. & Grunow, M. (2009). Milp approaches to sustainable production and distribution of meal elements. In International conference on computers and industrial engineering 2009, CIE 2009 (pp. 973-978).
[2] Apaiah, R. K., Hendrix, E. M. T., Meerdink, G., & Linnemann, A. R. (2005). Qualitative methodology for efficient food chain design. Trends in Food Science and Technology, 16, 204-214. · doi:10.1016/j.tifs.2004.09.004
[3] Apaiah, R. K., Linnemann, A. R., & Van Der Kooi, H. J. (2006). Exergy analysis: A tool to study the sustainability of food supply chains. Food Research International, 39, 1-11. · doi:10.1016/j.foodres.2005.04.006
[4] Aramyan, L., Hoste, R., Van Den Broek, W., Groot, J., Soethoudt, H., Nguyen, T. L., et al. (2011). Towards sustainable food production: A scenario study of the European pork sector. Journal on Chain and Network Science, 11, 177-189. · doi:10.3920/JCNS2011.Qpork8
[5] Blonk, H. (2006). Duurzaam broodbakken: Werkdocument analysefase bakker Wiltink. Gouda: Blonk Milieu Advies. · Zbl 1146.90391
[6] Braungart, M., Mcdonough, W., & Bollinger, A. (2007). Cradle-to-cradle design: Creating healthy emissions—A strategy for eco-effective product and system design. Journal of Cleaner Production, 15, 1337-1348. · doi:10.1016/j.jclepro.2006.08.003
[7] Chaabane, A., Ramudhin, A., & Paquet, M. (2011). Designing supply chains with sustainability considerations. Production Planning & Control, 22, 727-741. · doi:10.1080/09537287.2010.543554
[8] Chaabane, A., Ramudhin, A., & Paquet, M. (2012). Design of sustainable supply chains under the emission trading scheme. International Journal of Production Economics, 135, 37-49. · doi:10.1016/j.ijpe.2010.10.025
[9] Claassen, G. D. H. & Hendrix, E. M. T. (2014). On modelling approaches for planning and scheduling in food processing industry. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics).
[10] Chanta, S., Mayorga, M. E., & McLay, L. A. (2014). Improving emergency service in rural areas: a bi-objective covering location model for EMS systems. Annals of Operations Research, 221, 133-159. · Zbl 1301.90054 · doi:10.1007/s10479-011-0972-6
[11] Clark, A., Almada-Lobo, B., & Almeder, C. (2011). Lot sizing and scheduling: Industrial extensions and research opportunities. International Journal of Production Research, 49, 2457-2461. · doi:10.1080/00207543.2010.532908
[12] Coatanéa, E., Kuuva, M., Makkonnen, P. E., Saarelainen, T. & Castillón-Solano, M. O. (2006). Analysis of the concept of sustainability: Definition of conditions for using exergy as a uniform environmental metric. In Proceedings of the 13th CIRP international conference on life cycle engineering, 2006 (pp. 81-86).
[13] Cortez, L. A. B., Larson, D. L., & Da Silva, A. (1997). Energy and exergy evaluation of ice production by absorption refrigeration. Transactions of the American Society of Agricultural Engineers, 40, 395-403. · doi:10.13031/2013.21264
[14] Das, I., & Dennis, J. E. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization, 14, 63-69. · doi:10.1007/BF01197559
[15] Draganovic, V., Jørgensen, S. E., Boom, R., Jonkers, J., Riesen, G., & Van Der Goot, A. J. (2013). Sustainability assessment of salmonid feed using energy, classical exergy and eco-exergy analysis. Ecological Indicators, 34, 277-289. · doi:10.1016/j.ecolind.2013.05.017
[16] Ehrgott, M. (2005). Multicriteria optimization. Berlin: Springer. · Zbl 1132.90001
[17] FAO. (2013). Food wastage footprint; impacts on natural resources. Rome: FAO.
[18] Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9-28. · doi:10.1016/j.ijpe.2013.12.028
[19] Harris, I., Naim, M., Palmer, A., Potter, A., & Mumford, C. (2011). Assessing the impact of cost optimization based on infrastructure modelling on CO \[_22\] emissions. International Journal of Production Economics, 131, 313-321. · doi:10.1016/j.ijpe.2010.03.005
[20] Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: A review. International Journal of Production Research, 46, 1619-1643. · Zbl 1160.90407 · doi:10.1080/00207540600902262
[21] Kotas, T. J. (1995). The exergy method of thermal plant analysis. Malabar, FL: Krieger Publishing.
[22] Mavrotas, G. (2009). Effective implementation of the \[\varepsilon\] ε-constraint method in multi-objective. Mathematical Programming Problems, 213, 455-465. · Zbl 1168.65029
[23] Miettinen, K.; Branke, J. (ed.); Deb, K. (ed.); Miettinen, K. (ed.); Słowinski, R. (ed.), Introduction to multiobjective optimization: Noninteractive approaches (2008), Berlin
[24] Morris, D. R. (1991). Exergy analysis and cumulative exergy consumption of complex chemical processes: The industrial chlor-alkali processes. Chemical Engineering Science, 46, 459-465. · doi:10.1016/0009-2509(91)80007-L
[25] Oglethorpe, D. (2010). Optimising economic, environmental, and social objectives: A goal-programming approach in the food sector. Environment and Planning A, 42, 1239-1254. · doi:10.1068/a42292
[26] Paksoy, T., Özceylan, E. & Weber, G. W. (2010). A multi objective model for optimization of a green supply chain network. In AIP conference proceedings (pp. 311-320).
[27] Papargyropoulou, E., Lozano, R., Steinberger, K., Wright, N., & Ujang, Z. B. (2014). The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production, 76, 106-115. · doi:10.1016/j.jclepro.2014.04.020
[28] Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer programming. New York: Springer. · Zbl 1102.90039
[29] Quadt, D., & Kuhn, H. (2008). Capacitated lot-sizing with extensions: A review. 4OR, 6, 61-83. · Zbl 1146.90391 · doi:10.1007/s10288-007-0057-1
[30] Quariguasi Frota Neto, J., Walther, G., Bloemhof, J., Van Nunen, J. A. E. E., & Spengler, T. (2009). A methodology for assessing eco-efficiency in logistics networks. European Journal of Operational Research, 193, 670-682. · Zbl 1175.90048 · doi:10.1016/j.ejor.2007.06.056
[31] Shukla, M., & Jharkharia, S. (2013). Agri-fresh produce supply chain management: A state-of-the-art literature review. International Journal of Operations and Production Management, 33, 114-158. · doi:10.1108/01443571311295608
[32] Soysal, M., Bloemhof-Ruwaard, J. M., & Van Der Vorst, J. G. A. J. (2014). Modelling food logistics networks with emission considerations: The case of an international beef supply chain. International Journal of Production Economics, 152, 57-70. · doi:10.1016/j.ijpe.2013.12.012
[33] Validi, S., Bhattacharya, A., & Byrne, P. J. (2014). A case analysis of a sustainable food supply chain distribution system-A multi-objective approach. International Journal of Production Economics, 152, 71-87. · doi:10.1016/j.ijpe.2014.02.003
[34] Van Der Vorst, J. G. A. J., Tromp, S. O., & Van Der Zee, D. J. (2009). Simulation modelling for food supply chain redesign; integrated decision making on product quality, sustainability and logistics. International Journal of Production Research, 47, 6611-6631. · Zbl 1198.90071 · doi:10.1080/00207540802356747
[35] Wall, G. (2010). On exergy and sustainable development in environmental engineering. The Open Environmental Engineering Journal, 3, 21-32. · doi:10.2174/1874829501003010021
[36] You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. AIChE Journal, 58, 1157-1180. · doi:10.1002/aic.12637
[37] Zanoni, S., & Zavanella, L. (2012). Chilled or frozen? Decision strategies for sustainable food supply chains. International Journal of Production Economics, 140, 731-736. · doi:10.1016/j.ijpe.2011.04.028
[38] Zisopoulos, F. K., Moejes, S. N., Rossier-Miranda, F. J., Van Der Goot, A. J., & Boom, R. M. (2015). Exergetic comparison of food waste valorization in industrial bread production. Energy, 82, 640-649. · doi:10.1016/j.energy.2015.01.073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.