×

Scaling regimes in spherical shell rotating convection. (English) Zbl 1383.76530

Summary: Rayleigh-Bénard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning \(3\times 10^{-7}\leqslant E\leqslant 10^{-1}\), Rayleigh numbers within the range \(10^{3}<Ra<2\times 10^{10}\) and a Prandtl number of unity. The radius ratio \(r_{i}/r_{o}\) is 0.6 in all cases and gravity is assumed to be proportional to \(1/r^{2}\). We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a small subset of our numerical data approach the asymptotic diffusivity-free scaling of rotating convection \(Nu\sim Ra^{3/2}E^{2}\) in a narrow fraction of the parameter space delimited by \(6\,Ra_{c}\leqslant Ra\leqslant 0.4\,E^{-8/5}\). Using a decomposition of the viscous dissipation rate into bulk and boundary layer contributions, we establish a theoretical scaling of the flow velocity that accurately describes the numerical data. In rapidly rotating turbulent convection, the fluid bulk is controlled by a triple force balance between Coriolis, inertia and buoyancy, while the remaining fraction of the dissipation can be attributed to the viscous friction in the Ekman layers. Beyond \(Ra\simeq E^{-8/5}\), the rotational constraint on the convective flow is gradually lost and the flow properties continuously vary to match the regime changes between rotation-dominated and non-rotating convection. We show that the quantity \(RaE^{12/7}\) provides an accurate transition parameter to separate rotating and non-rotating convection.

MSC:

76U05 General theory of rotating fluids
76R05 Forced convection
76F35 Convective turbulence

Software:

SHTns
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahlers, G.; Grossmann, S.; Lohse, D., Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection, Rev. Mod. Phys., 81, 503-537, (2009)
[2] Amati, G.; Koal, K.; Massaioli, F.; Sreenivasan, K. R.; Verzicco, R., Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number, Phys. Fluids, 17, 12, (2005) · Zbl 1188.76006
[3] Aubert, J.; Brito, D.; Nataf, H.-C.; Cardin, P.; Masson, J.-P., A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium, Phys. Earth Planet. Inter., 128, 51-74, (2001)
[4] Aubert, J.; Gillet, N.; Cardin, P., Quasigeostrophic models of convection in rotating spherical shells, Geochem. Geophys. Geosyst., 4, 7, 1052, (2003)
[5] Aurnou, J. M., Planetary core dynamics and convective heat transfer scaling, Geophys. Astrophys. Fluid Dyn., 101, 327-345, (2007)
[6] Aurnou, J. M.; Calkins, M. A.; Cheng, J. S.; Julien, K.; King, E. M.; Nieves, D.; Soderlund, K. M.; Stellmach, S., Rotating convective turbulence in Earth and planetary cores, Phys. Earth Planet. Inter., 246, 52-71, (2015)
[7] Barker, A. J.; Dempsey, A. M.; Lithwick, Y., Theory and simulations of rotating convection, Astrophys. J., 791, 13, (2014)
[8] Bercovici, D.; Schubert, G.; Glatzmaier, G. A.; Zebib, A., Three-dimensional thermal convection in a spherical shell, J. Fluid Mech., 206, 75-104, (1989) · Zbl 0678.76087
[9] Blasius, H., Grenzschichten in Flüssigkeiten mit Kleiner Reibung, Z. Math. Phys., 56, 1-37, (1908) · JFM 39.0803.02
[10] Boubnov, B. M.; Golitsyn, G. S., Temperature and velocity field regimes of convective motions in a rotating plane fluid layer, J. Fluid Mech., 219, 215-239, (1990)
[11] Breuer, M.; Wessling, S.; Schmalzl, J.; Hansen, U., Effect of inertia in Rayleigh-Bénard convection, Phys. Rev. E, 69, 2, (2004)
[12] Busse, F. H., Thermal instabilities in rapidly rotating systems, J. Fluid Mech., 44, 441-460, (1970) · Zbl 0224.76041
[13] Busse, F. H.; Carrigan, C. R., Convection induced by centrifugal buoyancy, J. Fluid Mech., 62, 579-592, (1974) · Zbl 0282.76039
[14] Busse, F. H.; Or, A. C., Convection in a rotating cylindrical annulus – thermal Rossby waves, J. Fluid Mech., 166, 173-187, (1986) · Zbl 0593.76090
[15] Cardin, P.; Olson, P., Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core, Phys. Earth Planet. Inter., 82, 235-259, (1994)
[16] Cardin, P. & Olson, P.20158.13 experiments on core dynamics. In Treatise on Geophysics, 2nd edn. (ed. Schubert, G.), pp. 317-339. Elsevier. doi:10.1016/B978-0-444-53802-4.00147-0
[17] Chandrasekhar, S., Hydrodynamic and Hydrodynamic Stability, (1961), Oxford University Press
[18] Cheng, J. S.; Stellmach, S.; Ribeiro, A.; Grannan, A.; King, E. M.; Aurnou, J. M., Laboratory-numerical models of rapidly rotating convection in planetary cores, Geophys. J. Intl, 201, 1-17, (2015)
[19] Chillà, F.; Schumacher, J., New perspectives in turbulent Rayleigh-Bénard convection, Eur. Phys. J. E, 35, 7, 58, (2012)
[20] Christensen, U. R., Zonal flow driven by strongly supercritical convection in rotating spherical shells, J. Fluid Mech., 470, 115-133, (2002) · Zbl 1075.76027
[21] Christensen, U. R.; Aubert, J., Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields, Geophys. J. Intl, 166, 97-114, (2006)
[22] Christensen, U. R.; Aubert, J.; Cardin, P.; Dormy, E.; Gibbons, S.; Glatzmaier, G. A.; Grote, E.; Honkura, Y.; Jones, C.; Kono, M., A numerical dynamo benchmark, Phys. Earth Planet. Inter., 128, 25-34, (2001)
[23] Christensen, U. R. & Wicht, J.20158.10 - numerical dynamo simulations. In Treatise on Geophysics, 2nd edn. (ed. Schubert, G.), pp. 245-277. Elsevier. doi:10.1016/B978-0-444-53802-4.00145-7
[24] Cordero, S.; Busse, F. H., Experiments on convection in rotating hemispherical shells – transition to a quasi-periodic state, Geophys. Res. Lett., 19, 733-736, (1992)
[25] Davidson, P. A., Scaling laws for planetary dynamos, Geophys. J. Intl, 195, 67-74, (2013)
[26] Davidson, P. A., Turbulence: An Introduction for Scientists and Engineers, (2015), Oxford University Press · Zbl 1315.76001
[27] Dormy, E.; Soward, A. M.; Jones, C. A.; Jault, D.; Cardin, P., The onset of thermal convection in rotating spherical shells, J. Fluid Mech., 501, 43-70, (2004) · Zbl 1058.76026
[28] Ecke, R. E.; Niemela, J. J., Heat transport in the geostrophic regime of rotating Rayleigh-Bénard convection, Phys. Rev. Lett., 113, 11, (2014)
[29] Egbers, C.; Beyer, W.; Bonhage, A.; Hollerbach, R.; Beltrame, P., The geoflow-experiment on ISS. Part I: experimental preparation and design of laboratory testing hardware, Adv. Space Res., 32, 171-180, (2003)
[30] Funfschilling, D.; Brown, E.; Nikolaenko, A.; Ahlers, G., Heat transport by turbulent Rayleigh Bénard convection in cylindrical samples with aspect ratio one and larger, J. Fluid Mech., 536, 145-154, (2005) · Zbl 1122.76304
[31] Garcia, F.; Sánchez, J.; Net, M., Numerical simulations of thermal convection in rotating spherical shells under laboratory conditions, Phys. Earth Planet. Inter., 230, 28-44, (2014)
[32] Gastine, T.; Wicht, J., Effects of compressibility on driving zonal flow in gas giants, Icarus, 219, 428-442, (2012)
[33] Gastine, T.; Wicht, J.; Aurnou, J. M., Turbulent Rayleigh-Bénard convection in spherical shells, J. Fluid Mech., 778, 721-764, (2015) · Zbl 1382.76228
[34] Gastine, T., Wicht, J., Barik, A., Putigny, B. & Duarte, L. D. V.2016 MagIC v5.4, doi:10.5281/zenodo.51723.
[35] Gillet, N.; Jones, C. A., The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder, J. Fluid Mech., 554, 343-369, (2006) · Zbl 1091.76063
[36] Gilman, P. A., Nonlinear dynamics of boussinesq convection in a deep rotating spherical shell. I, Geophys. Astrophys. Fluid Dyn., 8, 93-135, (1977) · Zbl 0354.76064
[37] Gilman, P. A.; Glatzmaier, G. A., Compressible convection in a rotating spherical shell. I. Anelastic equations, Astrophys. J. Suppl., 45, 335-349, (1981)
[38] Greenspan, H. P., The Theory of Rotating Fluids, (1968), Cambridge University Press · Zbl 0182.28103
[39] Grossmann, S.; Lohse, D., Scaling in thermal convection: a unifying theory, J. Fluid Mech., 407, 27-56, (2000) · Zbl 0972.76045
[40] Guervilly, C.2010 Dynamos numériques planétaires générées par cisaillement en surface ou chauffage interne. PhD thesis, Sciences de la Terre, Univers et Environnement, Université de Grenoble, France.
[41] Guervilly, C. & Cardin, P.2016Subcritical convection in a rapidly rotating sphere at low Prandtl number. J. Fluid Mech. (submitted). · Zbl 1383.76546
[42] Hart, J. E.; Glatzmaier, G. A.; Toomre, J., Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity, J. Fluid Mech., 173, 519-544, (1986)
[43] Horn, S.; Shishkina, O., Toroidal and poloidal energy in rotating Rayleigh-Bénard convection, J. Fluid Mech., 762, 232-255, (2015)
[44] Ingersoll, A. P.; Pollard, D., Motion in the interiors and atmospheres of Jupiter and Saturn: scale analysis, anelastic equations, barotropic stability criterion, Icarus, 52, 62-80, (1982)
[45] Jarvis, G. T., Effects of curvature on two-dimensional models of mantle convection: cylindrical polar coordinates, J. Geophys. Res., 98, 4477-4485, (1993)
[46] Jones, C. A.2015Thermal and compositional convection in the outer core. In Treatise on Geophysics, 2nd edn. (ed. Schubert, G.), pp. 115-159. Elsevier. doi:10.1016/B978-0-444-53802-4.00141-X
[47] Jones, C. A.; Boronski, P.; Brun, A. S.; Glatzmaier, G. A.; Gastine, T.; Miesch, M. S.; Wicht, J., Anelastic convection-driven dynamo benchmarks, Icarus, 216, 120-135, (2011)
[48] Julien, K.; Aurnou, J. M.; Calkins, M. A.; Knobloch, E.; Marti, P.; Stellmach, S.; Vasil, G. M., A nonlinear model for rotationally constrained convection with Ekman pumping, J. Fluid Mech., 798, 50-87, (2016) · Zbl 1422.76165
[49] Julien, K.; Knobloch, E.; Rubio, A. M.; Vasil, G. M., Heat transport in Low-Rossby-number Rayleigh-Bénard convection, Phys. Rev. Lett., 109, 25, (2012) · Zbl 07649676
[50] Julien, K.; Legg, S.; Mcwilliams, J.; Werne, J., Rapidly rotating turbulent Rayleigh-Benard convection, J. Fluid Mech., 322, 243-273, (1996) · Zbl 1002.76564
[51] Julien, K.; Rubio, A. M.; Grooms, I.; Knobloch, E., Statistical and physical balances in low Rossby number Rayleigh-Bénard convection, Geophys. Astrophys. Fluid Dyn., 106, 392-428, (2012) · Zbl 07649676
[52] King, E. M.; Aurnou, J. M., Turbulent convection in liquid metal with and without rotation, Proc. Natl Acad. Sci. USA, 110, 17, 6688-6693, (2013)
[53] King, E. M.; Buffett, B. A., Flow speeds and length scales in geodynamo models: the role of viscosity, Earth Planet. Sci. Lett., 371, 156-162, (2013)
[54] King, E. M.; Soderlund, K. M.; Christensen, U. R.; Wicht, J.; Aurnou, J. M., Convective heat transfer in planetary dynamo models, Geochem. Geophys. Geosyst., 11, 6016, (2010)
[55] King, E. M.; Stellmach, S.; Aurnou, J. M., Heat transfer by rapidly rotating Rayleigh-Bénard convection, J. Fluid Mech., 691, 568-582, (2012) · Zbl 1241.76269
[56] King, E. M.; Stellmach, S.; Buffett, B., Scaling behaviour in Rayleigh-Bénard convection with and without rotation, J. Fluid Mech., 717, 449-471, (2013) · Zbl 1284.76345
[57] King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M., Boundary layer control of rotating convection systems, Nature, 457, 301-304, (2009)
[58] Kraichnan, R. H., Turbulent thermal convection at arbitrary Prandtl number, Phys. Fluids, 5, 1374-1389, (1962) · Zbl 0116.42803
[59] Kunnen, R. P. J.; Geurts, B. J.; Clercx, H. J. H., Experimental and numerical investigation of turbulent convection in a rotating cylinder, J. Fluid Mech., 642, 445, (2010) · Zbl 1183.76763
[60] Kunnen, R. P. J.; Ostilla-Mónico, R.; Van Der Poel, E. P.; Verzicco, R.; Lohse, D., Transition to geostrophic convection: the role of the boundary conditions, J. Fluid Mech., 799, 413-432, (2016) · Zbl 1460.76438
[61] Lakkaraju, R.; Stevens, R. J. A. M.; Verzicco, R.; Grossmann, S.; Prosperetti, A.; Sun, C.; Lohse, D., Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Bénard convection, Phys. Rev. E, 86, 5, (2012)
[62] Liu, Y.; Ecke, R. E., Heat transport scaling in turbulent Rayleigh-Bénard convection: effects of rotation and Prandtl number, Phys. Rev. Lett., 79, 2257-2260, (1997)
[63] Liu, Y.; Ecke, R. E., Local temperature measurements in turbulent rotating Rayleigh-Bénard convection, Phys. Rev. E, 84, 1, (2011)
[64] Oruba, L.; Dormy, E., Predictive scaling laws for spherical rotating dynamos, Geophys. J. Intl, 198, 828-847, (2014)
[65] Plumley, M.; Julien, K.; Marti, P.; Stellmach, S., The effects of Ekman pumping on quasi-geostrophic Rayleigh-Benard convection, J. Fluid Mech., 803, 51-71, (2016) · Zbl 1462.76172
[66] Prandtl, L.1905Verhandlungen des III. Int. Math. Kongr., Heidelberg, 1904. pp. 484-491. Teubner.
[67] Rhines, P. B., Waves and turbulence on a beta-plane, J. Fluid Mech., 69, 417-443, (1975) · Zbl 0366.76043
[68] Rossby, H. T., A study of Benard convection with and without rotation, J. Fluid Mech., 36, 309-335, (1969)
[69] Schaeffer, N., Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, Geochem. Geophys. Geosyst., 14, 751-758, (2013)
[70] Schmitz, S.; Tilgner, A., Heat transport in rotating convection without Ekman layers, Phys. Rev. E, 80, 1, (2009)
[71] Shew, W. L.; Lathrop, D. P., Liquid sodium model of geophysical core convection, Phys. Earth Planet. Inter., 153, 136-149, (2005)
[72] Shishkina, O.; Stevens, R. J. A. M.; Grossmann, S.; Lohse, D., Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution, New J. Phys., 12, 7, (2010)
[73] Soderlund, K. M.; King, E. M.; Aurnou, J. M., The influence of magnetic fields in planetary dynamo models, Earth Planet. Sci. Lett., 333, 9-20, (2012)
[74] Stellmach, S.; Lischper, M.; Julien, K.; Vasil, G.; Cheng, J. S.; Ribeiro, A.; King, E. M.; Aurnou, J. M., Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics, Phys. Rev. Lett., 113, 25, (2014)
[75] Stevens, R. J. A. M.; Clercx, H. J. H.; Lohse, D., Heat transport and flow structure in rotating Rayleigh-Bénard convection, Eur. J. Mech. (B/Fluids), 40, 41-49, (2013) · Zbl 1408.76286
[76] Stevens, R. J. A. M.; Verzicco, R.; Lohse, D., Radial boundary layer structure and Nusselt number in Rayleigh-Bénard convection, J. Fluid Mech., 643, 495-507, (2010) · Zbl 1189.76286
[77] Stevenson, D. J., Turbulent thermal convection in the presence of rotation and a magnetic field – a heuristic theory, Geophys. Astrophys. Fluid Dyn., 12, 139-169, (1979) · Zbl 0434.76093
[78] Sumita, I.; Olson, P., Experiments on highly supercritical thermal convection in a rapidly rotating hemispherical shell, J. Fluid Mech., 492, 271-287, (2003) · Zbl 1049.76530
[79] Tilgner, A.; Busse, F. H., Finite-amplitude convection in rotating spherical fluid shells, J. Fluid Mech., 332, 359-376, (1997) · Zbl 0887.76070
[80] Verzicco, R.; Camussi, R., Prandtl number effects in convective turbulence, J. Fluid Mech., 383, 55-73, (1999) · Zbl 0939.76036
[81] Vidal, J.; Schaeffer, N., Quasi-geostrophic modes in the Earth’s fluid core with an outer stably stratified layer, Geophys. J. Intl, 202, 3, 2182-2193, (2015)
[82] Wicht, J., Inner-core conductivity in numerical dynamo simulations, Phys. Earth Planet. Inter., 132, 281-302, (2002)
[83] Yadav, R. K.; Gastine, T.; Christensen, U. R.; Duarte, L. D. V.; Reiners, A., Effect of shear and magnetic field on the heat-transfer efficiency of convection in rotating spherical shells, Geophys. J. Intl, 204, 1120-1133, (2016)
[84] Zhong, J.-Q.; Ahlers, G., Heat transport and the large-scale circulation in rotating turbulent Rayleigh-Bénard convection, J. Fluid Mech., 665, 300-333, (2010) · Zbl 1225.76033
[85] Zhong, J.-Q.; Stevens, R. J. A. M.; Clercx, H. J. H.; Verzicco, R.; Lohse, D.; Ahlers, G., Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection, Phys. Rev. Lett., 102, 4, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.