×

Spherical convective dynamos in the rapidly rotating asymptotic regime. (English) Zbl 1383.76538

Summary: Self-sustained convective dynamos in planetary systems operate in an asymptotic regime of rapid rotation, where a balance is thought to hold between the Coriolis, pressure, buoyancy and Lorentz forces (the MAC balance). Classical numerical solutions have previously been obtained in a regime of moderate rotation where viscous and inertial forces are still significant. We define a uni-dimensional path in parameter space between classical models and asymptotic conditions from the requirements to enforce a MAC balance and to preserve the ratio between the magnetic diffusion and convective overturn times (the magnetic Reynolds number). Direct numerical simulations performed along this path show that the spatial structure of the solution at scales larger than the magnetic dissipation length is largely invariant. This enables the definition of large-eddy simulations resting on the assumption that small-scale details of the hydrodynamic turbulence are irrelevant to the determination of the large-scale asymptotic state. These simulations are shown to be in good agreement with direct simulations in the range where both are feasible, and can be computed for control parameter values far beyond the current state of the art, such as an Ekman number \(E=10^{-8}\). We obtain strong-field convective dynamos approaching the MAC balance and a Taylor state to an unprecedented degree of accuracy. The physical connection between classical models and asymptotic conditions is shown to be devoid of abrupt transitions, demonstrating the asymptotic relevance of classical numerical dynamo mechanisms. The fields of the system are confirmed to follow diffusivity-free, power-based scaling laws along the path.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76R10 Free convection
85A25 Radiative transfer in astronomy and astrophysics

Software:

SHTns
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aubert, J., Steady zonal flows in spherical shell dynamos, J. Fluid Mech., 542, 53-67, (2005) · Zbl 1080.76072
[2] Aubert, J., Earth’s core internal dynamics 1840-2010 imaged by inverse geodynamo modelling, Geophys. J. Intl, 197, 3, 1321-1334, (2014)
[3] Aubert, J.; Aurnou, J.; Wicht, J., The magnetic structure of convection-driven numerical dynamos, Geophys. J. Intl, 172, 945-956, (2008)
[4] Aubert, J.; Finlay, C. C.; Fournier, A., Bottom-up control of geomagnetic secular variation by the Earth’s inner core, Nature, 502, 219-223, (2013)
[5] Aubert, J.; Labrosse, S.; Poitou, C., Modelling the palaeo-evolution of the geodynamo, Geophys. J. Intl, 179, 3, 1414-1428, (2009)
[6] Aurnou, J.; Andreadis, S.; Zhu, L.; Olson, P., Experiments on convection in Earth’s core tangent cylinder, Earth Planet. Sci. Lett., 212, 119-134, (2003)
[7] Aurnou, J. M., Planetary core dynamics and convective heat transfer scaling, Geophys. Astrophys. Fluid Dyn., 101, 5-6, 327-345, (2007)
[8] Aurnou, J. M.; Calkins, M. A.; Cheng, J. S.; Julien, K.; King, E. M.; Nieves, D.; Soderlund, K. M.; Stellmach, S., Rotating convective turbulence in earth and planetary cores, Phys. Earth Planet. Inter., 246, 52-71, (2015)
[9] Baerenzung, J.; Mininni, P. D.; Pouquet, A.; Politano, H.; Ponty, Y., Spectral modeling of rotating turbulent flows, Phys. Fluids, 22, 2, (2010) · Zbl 1183.76082
[10] Baerenzung, J.; Politano, H.; Ponty, Y.; Pouquet, A., Spectral modeling of magnetohydrodynamic turbulent flows, Phys. Rev. E, 78, (2008) · Zbl 1183.76082
[11] Braginsky, S. I., Magnetic waves in the Earth’s core, Geomagn. Aeron., 7, 1050-1060, (1967)
[12] Braginsky, S. I., MAC-oscillations in the hidden ocean of the core, J. Geomagn. Geoelectr., 45, 11-12, 1517-1538, (1993)
[13] Braginsky, S. I.; Roberts, P. H., Equations governing convection in Earth’s core and the geodynamo, Geophys. Astrophys. Fluid Dyn., 79, 1-4, 1-97, (1995)
[14] Buffett, B. A., Tidal dissipation and the strength of the Earth’s internal magnetic field, Nature, 468, 7326, 952-955, (2010)
[15] Buffett, B. A., Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core, Nature, 507, 7493, 484-487, (2014)
[16] Busse, F. H., Thermal instabilities in rapidly rotating systems, J. Fluid Mech., 44, 3, 441-460, (1970) · Zbl 0224.76041
[17] Calkins, M. A.; Julien, K.; Tobias, S. M.; Aurnou, J. M., A multiscale dynamo model driven by quasi-geostrophic convection, J. Fluid Mech., 780, 143-166, (2015) · Zbl 1382.86015
[18] Cheng, J. S.; Aurnou, J. M., Tests of diffusion-free scaling behaviors in numerical dynamo datasets, Earth Planet. Sci. Lett., 436, 121-129, (2016)
[19] Christensen, U.; Tilgner, A., Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos, Nature, 429, 169-171, (2004)
[20] Christensen, U. R., Earth science: a sheet-metal geodynamo, Nature, 454, 7208, 1058-1059, (2008)
[21] Christensen, U. R., Dynamo scaling laws and applications to the planets, Space. Sci. Rev., 152, 1, 565-590, (2010)
[22] Christensen, U. R.; Aubert, J., Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields, Geophys. J. Intl, 166, 97-114, (2006)
[23] Christensen, U. R.; Aubert, J.; Busse, F. H.; Cardin, P.; Dormy, E.; Gibbons, S.; Glatzmaier, G. A.; Honkura, Y.; Jones, C. A.; Kono, M., A numerical dynamo benchmark, Phys. Earth Planet. Inter., 128, 25-34, (2001)
[24] Christensen, U. R.; Aubert, J.; Hulot, G., Conditions for Earth-like geodynamo models, Earth Planet. Sci. Lett., 296, 3-4, 487-496, (2010)
[25] Christensen, U. R.; Holzwarth, V.; Reiners, A., Energy flux determines magnetic field strength of planets and stars, Nature, 457, 7226, 167-169, (2009)
[26] Christensen, U. R. & Wicht, J.20158.10 - Numerical dynamo simulations. In Treatise on Geophysics, 2nd edn. (ed. Schubert, G.), pp. 245-277. Elsevier. doi:10.1016/B978-0-444-53802-4.00145-7
[27] Davidson, P. A., Scaling laws for planetary dynamos, Geophys. J. Intl, 195, 1, 67-74, (2013)
[28] Dormy, E., Strong-field spherical dynamos, J. Fluid Mech., 789, 500-513, (2016)
[29] Dormy, E.; Cardin, P.; Jault, D., MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field, Earth Planet. Sci. Lett., 160, 1-2, 15-30, (1998)
[30] Gastine, T.; Heimpel, M.; Wicht, J., Zonal flow scaling in rapidly-rotating compressible convection, Phys. Earth Planet. Inter., 232, 36-50, (2014)
[31] Gastine, T.; Wicht, J.; Aurnou, J. M., Turbulent Rayleigh-Bénard convection in spherical shells, J. Fluid Mech., 778, 721-764, (2015) · Zbl 1382.76228
[32] Gastine, T., Wicht, J., Barik, A., Putigny, B. & Duarte, L. D. V.2016 MagIC v5.4, doi:10.5281/zenodo.51723.
[33] Gillet, N.; Jault, D.; Canet, E.; Fournier, A., Fast torsional waves and strong magnetic field within the Earth’s core, Nature, 465, 7294, 74-77, (2010)
[34] Gillet, N.; Jones, C. A., The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder, J. Fluid Mech., 554, 343-369, (2006) · Zbl 1091.76063
[35] Gilman, P. A., Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell. I, Geophys. Astrophys. Fluid Dyn., 8, 93-135, (1977) · Zbl 0354.76064
[36] Glatzmaier, G. A.; Roberts, P. H., A 3-dimensional self-consistent computer-simulation of a geomagnetic-field reversal, Nature, 377, 6546, 203-209, (1995)
[37] Grote, E.; Busse, F. H.; Tilgner, A., Effects of hyperdiffusivities on dynamo simulations, Geophys. Res. Lett., 27, 13, 2001-2004, (2000)
[38] Hollerbach, R., On the theory of the geodynamo, Phys. Earth Planet. Inter., 98, 3-4, 163-185, (1996)
[39] Hughes, D. W.; Cattaneo, F., Strong-field dynamo action in rapidly rotating convection with no inertia, Phys. Rev. E, 93, (2016)
[40] Julien, K.; Knobloch, E.; Rubio, A. M.; Vasil, G. M., Heat transport in low-Rossby-number Rayleigh-Bénard convection, Phys. Rev. Lett., 109, 25, (2012) · Zbl 07649676
[41] Kageyama, A.; Miyagoshi, T.; Sato, T., Formation of current coils in geodynamo simulations, Nature, 454, 7208, 1106-1109, (2008)
[42] King, E. M.; Aurnou, J. M., Magnetostrophic balance as the optimal state for turbulent magnetoconvection, Proc. Natl Acad. Sci., 112, 4, 990-994, (2015)
[43] King, E. M.; Buffett, B. A., Flow speeds and length scales in geodynamo models: the role of viscosity, Earth Planet Sci. Lett., 371, 156-162, (2013)
[44] King, E. M.; Soderlund, K. M.; Christensen, U. R.; Wicht, J.; Aurnou, J. M., Convective heat transfer in planetary dynamo models, Geochem. Geophys. Geosyst., 11, (2010)
[45] Konôpková, Z.; Mcwilliams, R. S.; Gómez-Pérez, N.; Goncharov, A. F., Direct measurement of thermal conductivity in solid iron at planetary core conditions, Nature, 534, 7605, 99-101, (2016)
[46] Lister, J. R., Expressions for the dissipation driven by convection in the Earth’s core, Phys. Earth Planet. Inter., 140, 1-3, 145-158, (2003)
[47] Livermore, P. W.; Bailey, L. M.; Hollerbach, R., A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell, Sci. Rep., 6, 22812, (2016)
[48] Malkus, W. V. R.; Proctor, M. R. E., The macrodynamics of alpha-effect dynamos in rotating fluids, J. Fluid Mech., 67, 417-443, (1975) · Zbl 0299.76049
[49] Matsui, H.; Buffett, B. A., Characterization of subgrid-scale terms in a numerical geodynamo simulation, Phys. Earth Planet. Inter., 223, 77-85, (2013)
[50] Miyagoshi, T.; Kageyama, A.; Sato, T., Zonal flow formation in the Earth’s core, Nature, 463, 7282, 793-796, (2010)
[51] Nataf, H.-C. & Schaeffer, N.2015Turbulence in the core. In Treatise on Geophysics, pp. 161-181. Elsevier. doi:10.1016/B978-0-444-53802-4.00142-1
[52] Ohta, K.; Kuwayama, Y.; Hirose, K.; Shimizu, K.; Ohishi, Y., Experimental determination of the electrical resistivity of iron at Earth’s core conditions, Nature, 534, 7605, 95-98, (2016)
[53] Oruba, L., On the role of thermal boundary conditions in dynamo scaling laws, Geophys. Astrophys. Fluid Dyn., 110, 6, 529-545, (2016)
[54] Oruba, L.; Dormy, E., Predictive scaling laws for spherical rotating dynamos, Geophys. J. Intl, 198, 2, 828-847, (2014)
[55] Pichon, G.; Aubert, J.; Fournier, A., Coupled dynamics of Earth’s geomagnetic westward drift and inner core super-rotation, Earth Planet. Sci. Lett., 437, 114-126, (2016)
[56] Pozzo, M.; Davies, C. J.; Gubbins, D.; Alfè, D., Thermal and electrical conductivity of iron at Earth’s core conditions, Nature, 485, 7398, 355-358, (2012)
[57] Roberts, P. H.1978Magnetoconvection in a rapidly rotating fluid. In Rotating Fluids in Geophysics (ed. Roberts, P. H. & Soward, A. M.), pp. 421-435. Academic.
[58] Sakuraba, A.; Roberts, P. H., Generation of a strong magnetic field using uniform heat flux at the surface of the core, Nature Geosci., 2, 11, 802-805, (2009)
[59] Schaeffer, N., Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, Geophys. Geochem. Geosyst., 14, 3, 751-758, (2013)
[60] Sheyko, A.; Finlay, C. C.; Jackson, A., Magnetic reversals from planetary dynamo waves, Nature, 539, 551-554, (2016)
[61] Soderlund, K. M.; King, E. M.; Aurnou, J. M., The influence of magnetic fields in planetary dynamo models, Earth Planet Sci. Lett., 333, 9-20, (2012)
[62] Soderlund, K. M.; Sheyko, A.; King, E. M.; Aurnou, J. M., The competition between Lorentz and Coriolis forces in planetary dynamos, Prog. Earth Planet. Sci., 2, 1, 1-10, (2015)
[63] Soward, A. M., A convection-driven dynamo: I. The weak field case, Phil. Trans. R. Soc. Lond. A, 275, 1256, 611-646, (1974) · Zbl 0298.76064
[64] Starchenko, S. V.; Jones, C. A., Typical velocities and magnetic field strengths in planetary interiors, Icarus, 157, 2, 426-435, (2002)
[65] Stellmach, S.; Lischper, M.; Julien, K.; Vasil, G.; Cheng, J. S.; Ribeiro, A.; King, E. M.; Aurnou, J. M., Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics, Phys. Rev. Lett., 113, (2014)
[66] Stelzer, Z.; Jackson, A., Extracting scaling laws from numerical dynamo models, Geophys. J. Intl, 193, 3, 1265-1276, (2013)
[67] Takahashi, F.; Shimizu, H., A detailed analysis of a dynamo mechanism in a rapidly rotating spherical shell, J. Fluid Mech., 701, 228-250, (2012) · Zbl 1248.76158
[68] Taylor, J. B., Magneto-hydrodynamics of a rotating fluid and Earth’s dynamo problem, Proc. R. Soc. Lond. A, 9, 274-283, (1963) · Zbl 0125.43804
[69] Teed, R. J.; Jones, C. A.; Tobias, S. M., The transition to Earth-like torsional oscillations in magnetoconvection simulations, Earth Planet Sci. Lett., 419, 22-31, (2015)
[70] Wicht, J., Inner-core conductivity in numerical dynamo simulations, Phys. Earth Planet. Inter., 132, 281-302, (2002)
[71] Wicht, J.; Christensen, U. R., Torsional oscillations in dynamo simulations, Geophys. J. Intl, 181, 3, 1367-1380, (2010)
[72] Wu, C.; Roberts, P. H., On magnetostrophic mean-field solutions of the geodynamo equations, Geophys. Astrophys. Fluid Dyn., 109, 1, 84-110, (2015) · Zbl 1506.86020
[73] Yadav, R. K.; Gastine, T.; Christensen, U. R., Scaling laws in spherical shell dynamos with free-slip boundaries, Icarus, 225, 1, 185-193, (2013)
[74] Yadav, R. K.; Gastine, T.; Christensen, U. R.; Duarte, L. D. V., Consistent scaling laws in anelastic spherical shell dynamos, Astrophys. J., 774, 1, 6, (2013)
[75] Yadav, R. K.; Gastine, T.; Christensen, U. R.; Duarte, L. D. V.; Reiners, A., Effect of shear and magnetic field on the heat-transfer efficiency of convection in rotating spherical shells, Geophys. J. Intl, 204, 2, 1120-1133, (2016)
[76] Yadav, R. K.; Gastine, T.; Christensen, U. R.; Wolk, S. J.; Poppenhaeger, K., Approaching a realistic force balance in geodynamo simulations, Proc. Natl Acad. Sci., 113, 43, 12065-12070, (2016) · Zbl 1355.86007
[77] Zhang, K.; Jones, C. A., The effect of hyperviscosity on geodynamo models, Geophys. Res. Lett., 24, 22, 2869-2872, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.