×

Mechanics of water pore formation in lipid membrane under electric field. (English) Zbl 1372.92011

Summary: Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.

MSC:

92C05 Biophysics
92C35 Physiological flow
76S05 Flows in porous media; filtration; seepage
76W05 Magnetohydrodynamics and electrohydrodynamics
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alberts, B., Johnson, A., Lewis, J., et al.: Molecular Biology of the Cell, 5th edn. Garland Science, New York (2007)
[2] Gozen, I., Dommersnes, P.: Pore dynamics in lipid membranes. Eur. Phys. J-Spec. Top. 223, 1813-1829 (2014) · doi:10.1140/epjst/e2014-02228-5
[3] Sandre, O., Moreaux, L., Brochard-Wyart, F.: Dynamics of transient pores in stretched vesicles. Proc. Natl. Acad. Sci. USA 96, 10591-10596 (1999) · doi:10.1073/pnas.96.19.10591
[4] Podbilewicz, B.: Virus and cell fusion mechanisms. Annu. Rev. Cell Dev. Biol. 30, 111-139 (2014) · doi:10.1146/annurev-cellbio-101512-122422
[5] Fuhrmans, M., Marelli, G., Smirnova, Y.G., et al.: Mechanics of membrane fusion/pore formation. Chem. Phys. Lipids 185, 109-128 (2015) · doi:10.1016/j.chemphyslip.2014.07.010
[6] Pattni, B.S., Chupin, V.V., Torchilin, V.P.: New developments in liposomal drug delivery. Chem. Rev. 115, 10938-10966 (2015) · doi:10.1021/acs.chemrev.5b00046
[7] Lai, Y., Zhao, L., Bu, B., et al.: Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion. Phys. Biol. 12, 25003 (2015) · doi:10.1088/1478-3975/12/2/025003
[8] He, L., Wu, L.-G.G.: The debate on the kiss-and-run fusion at synapses. Trends Neurosci. 30, 447-455 (2007) · doi:10.1016/j.tins.2007.06.012
[9] Marx, V.: A deep look at synaptic dynamics. Nature 515, 293-297 (2014) · doi:10.1038/515293a
[10] Brunger, A.T., Cipriano, D.J., Diao, J.: Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit. Rev. Biochem. Mol. Biol. 50, 231-241 (2015) · doi:10.3109/10409238.2015.1023252
[11] Alabi, A.A., Tsien, R.W.: Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu. Rev. Physiol. 75, 393-422 (2013) · doi:10.1146/annurev-physiol-020911-153305
[12] Chernomordik, L.V., Kozlov, M.M.: Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675-683 (2008) · doi:10.1038/nsmb.1455
[13] van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112-124 (2008) · doi:10.1038/nrm2330
[14] Aihara, H., Miyazaki, J.: Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867-870 (1998) · doi:10.1038/nbt0998-867
[15] Heller, L.C., Heller, R.: In vivo electroporation for gene therapy. Hum. Gene Ther. 17, 890-897 (2006) · doi:10.1089/hum.2006.17.890
[16] Kotnik, T., Frey, W., Sack, M., et al.: Electroporation-based applications in biotechnology. Trends Biotechnol. 33, 480-488 (2015) · doi:10.1016/j.tibtech.2015.06.002
[17] Weaver, J.C., Chizmadzhev, Y.A.: Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135-160 (1996) · doi:10.1016/S0302-4598(96)05062-3
[18] Gehl, J.: Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta. Physiol. Scand. 177, 437-447 (2003) · doi:10.1046/j.1365-201X.2003.01093.x
[19] Mehierhuert, S., Guy, R.: Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57, 733-753 (2005) · doi:10.1016/j.addr.2004.12.007
[20] Weaver, J.C.: Electroporation: a general phenomenon for manipulating cells and tissues. J. Cell. Biochem. 51, 426-435 (1993) · doi:10.1002/jcb.2400510407
[21] Tieleman, D.P.: The molecular basis of electroporation. BMC Biochem. 5, 10 (2004) · doi:10.1186/1471-2091-5-10
[22] Böckmann, R.A., de Groot, B.L., Kakorin, S., et al.: Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys. J. 95, 1837-1850 (2008) · doi:10.1529/biophysj.108.129437
[23] Fernández, L.M., Marshall, G., Sagués, F., et al.: Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J. Phys. Chem. B 114, 6855-6865 (2010) · doi:10.1021/jp911605b
[24] Hu, Q., Joshi, R.P., Schoenbach, K.H.: Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 31902 (2005) · doi:10.1103/PhysRevE.72.031902
[25] Tieleman, P.D., Leontiadou, H., Mark, A.E., et al.: Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125, 6382-6383 (2003) · doi:10.1021/ja029504i
[26] Tarek, M.: Membrane electroporation: a molecular dynamics simulation. Biophys. J. 88, 4045-4053 (2005) · doi:10.1529/biophysj.104.050617
[27] Casciola, M., Bonhenry, D., Liberti, M., et al.: A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100, 11-17 (2014) · doi:10.1016/j.bioelechem.2014.03.009
[28] Gurtovenko, A.A., Vattulainen, I.: Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J. Am. Chem. Soc. 127, 17570-17571 (2005) · doi:10.1021/ja053129n
[29] Melcr, J., Bonhenry, D., Timr, S., et al.: Transmembrane potential modeling: comparison between methods of constant electric field and ion imbalance. J. Chem. Theory. Comput. 12, 2418-2425 (2016) · doi:10.1021/acs.jctc.5b01202
[30] Gurtovenko, A.A., Lyulina, A.S.: Electroporation of asymmetric phospholipid membranes. J. Phys. Chem. B 118, 9909-9918 (2014) · doi:10.1021/jp5028355
[31] Levine, Z.A., Vernier, T.P.: Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J. Membr. Biol. 236, 27-36 (2010) · doi:10.1007/s00232-010-9277-y
[32] Dehez, F., Delemotte, L., Kramar, P., et al.: Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J. Phys. Chem. C 118, 6752-6757 (2014) · doi:10.1021/jp4114865
[33] Ziegler, M.J., Vernier, P.T.: Interface water dynamics and porating electric fields for phospholipid bilayers. J. Phys. Chem. B 112, 13588-13596 (2008) · doi:10.1021/jp8027726
[34] Ho, M.-C.C., Levine, Z.A., Vernier, P.T.: Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers. J. Membr. Biol. 246, 793-801 (2013) · doi:10.1007/s00232-013-9549-4
[35] Tokman, M., Lee, J.H., Levine, Z.A., et al.: Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS ONE 8, e61111 (2013) · doi:10.1371/journal.pone.0061111
[36] Vernier, P.T., Levine, Z.A., Gundersen, M.A.: Water bridges in electropermeabilized phospholipid bilayers. Proc. IEEE 101, 494-504 (2013) · doi:10.1109/JPROC.2012.2222011
[37] Vernier, P. T.: Nanoscale restructuring of lipid bilayers in nanosecond electric fields. In: Advanced Electroporation Techniques in Biology and Medicine. CRC Press, 161-174 (2010)
[38] Casciola, M., Tarek, M.: A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim. Biophys. Acta-Biomembr. 1858, 2278-2289 (2016) · doi:10.1016/j.bbamem.2016.03.022
[39] Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Atomistic simulations of electroporation in water preembedded membranes. J. Phys. Chem. B 115, 13355-13359 (2011) · doi:10.1021/jp206607j
[40] Polak, A., Tarek, M., Tomšič, M., et al.: Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochemistry 100, 18-26 (2014) · doi:10.1016/j.bioelechem.2013.12.006
[41] Vernier, T.P., Ziegler, M.J.: Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J. Phys. Chem. B 111, 12993-12996 (2007) · doi:10.1021/jp077148q
[42] Jo, S., Kim, T., Iyer, V.G., et al.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859-1865 (2008) · doi:10.1002/jcc.20945
[43] Jo, S., Kim, T., Im, W.: Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007) · doi:10.1371/journal.pone.0000880
[44] Jo, S., Lim, J.B., Klauda, J.B., et al.: CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50-58 (2009) · doi:10.1016/j.bpj.2009.04.013
[45] Lee, J., Cheng, X., Swails, J.M., et al.: CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405-413 (2015) · doi:10.1021/acs.jctc.5b00935
[46] Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., et al.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983) · doi:10.1063/1.445869
[47] Abraham, M., Murtola, T., Schulz, R., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19-25 (2015) · doi:10.1016/j.softx.2015.06.001
[48] Klauda, J.B., Venable, R.M., Freites, A.J., et al.: Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830-7843 (2010) · doi:10.1021/jp101759q
[49] Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 14101 (2007) · doi:10.1063/1.2408420
[50] Parrinello, M.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981) · doi:10.1063/1.328693
[51] Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116-122 (2008) · doi:10.1021/ct700200b
[52] Essmann, U., Perera, L., Berkowitz, M.L., et al.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995) · doi:10.1063/1.470117
[53] Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33-38 (1996) · doi:10.1016/0263-7855(96)00018-5
[54] Limongelli, V., Bonomi, M., Parrinello, M.: Funnel metadynamics as accurate binding free-energy method. Proc. Natl. Acad. Sci. USA 110, 6358-6363 (2013) · doi:10.1073/pnas.1303186110
[55] Barducci, A., Bonomi, M., Parrinello, M.: Metadynamics. Wires. Comput. Mol. Sci. 1, 826-843 (2011) · doi:10.1002/wcms.31
[56] Spiwok, V., Lipovová, P., Králová, B.: Metadynamics in essential coordinates: free energy simulation of conformational changes. J. Phys. Chem. B 111, 3073-3076 (2007) · doi:10.1021/jp068587c
[57] Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 20603 (2008) · doi:10.1103/PhysRevLett.100.020603
[58] Li, D., Liu, M.S., Ji, B.: Mapping the dynamics landscape of conformational transitions in enzyme: the adenylate kinase case. Biophys. J. 109, 647-660 (2015) · doi:10.1016/j.bpj.2015.06.059
[59] Bonomi, M., Branduardi, D., Bussi, G., et al.: PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180, 1961-1972 (2009)
[60] Biarnés, X., Pietrucci, F., Marinelli, F., et al.: METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations. Comput. Phys. Commun. 183, 203-211 (2012)
[61] Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Molecular dynamics simulations of phase transition of lamellar lipid membrane in water under an electric field. Soft Matter 7, 147-152 (2010)
[62] Li, D., Ji, B., Hwang, K.-C., et al.: Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. PLoS ONE 6, e19268 (2011) · doi:10.1371/journal.pone.0019268
[63] Li, D.-C., Ji, B.-H.: Free energy calculation of single molecular interaction using Jarzynski’s identity method: the case of HIV-1 protease inhibitor system. Acta. Mech. Sin. 28, 891-903 (2012) · doi:10.1007/s10409-012-0112-9
[64] Xu, C., Li, D., Cheng, Y., et al.: Pulling out a peptide chain from \[{\upbeta }\] β-sheet crystallite: propagation of instability of H-bonds under shear force. Acta. Mech. Sin. 31, 416-424 (2015) · doi:10.1007/s10409-015-0404-y
[65] Xu, Z., Li, D., Ji, B.: Quantification of the stiffness and strength of cadherin ectodomain binding with different ions. Theo. Appl. Mech. Lett. 4, 034001 (2014) · doi:10.1063/2.1403401
[66] Cheng, Y., Koh, L.-D.D., Li, D., et al.: On the strength of \[{\upbeta }\] β-sheet crystallites of Bombyx mori silk fibroin. J. R. Soc. Interface 11, 20140305 (2014) · doi:10.1098/rsif.2014.0305
[67] Cheng, Y., Koh, L.-D., Li, D., et al.: Peptide-Graphene interactions enhance the mechanical properties of silk fibroin. ACS Appl. Mater. Inter. 7, 21787-21796 (2015) · doi:10.1021/acsami.5b05615
[68] Tepper, H.L., Voth, G.A.: Mechanisms of passive ion permeation through lipid bilayers: insights from simulations. J. Phys. Chem. B 110, 21327-21337 (2006) · doi:10.1021/jp064192h
[69] Al-Sakere, B., Andre, F., Bernat, C., et al.: Tumor ablation with irreversible electroporation. PLoS ONE 2, e1135 (2007) · doi:10.1371/journal.pone.0001135
[70] Gurtovenko, A.A., Vattulainen, I.: Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys. J. 92, 1878-1890 (2007) · doi:10.1529/biophysj.106.094797
[71] Rems, L., Ušaj, M., Kandušer, M., et al.: Cell electrofusion using nanosecond electric pulses. Sci. Rep. 3, 3382 (2013) · doi:10.1038/srep03382
[72] Zimmermann, U., Vienken, J.: Electric field-induced cell-to-cell fusion. J. Membr. Biol. 67, 165-182 (1982) · doi:10.1007/BF01868659
[73] Kotnik, T.: Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer. Phys. Life Rev. 10, 351-370 (2013) · doi:10.1016/j.plrev.2013.05.001
[74] Bu, B., Tian, Z., Li, D., et al.: High transmembrane voltage raised by close contact initiates fusion pore. Front. Mol. Neurosci. 9, 136 (2016) · doi:10.3389/fnmol.2016.00136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.