×

Introducing SummerTime: a package for high-precision computation of sums appearing in DRA method. (English) Zbl 1375.81230

Summary: We present the Mathematica package SummerTime for arbitrary-precision computation of sums appearing in the results of DRA method [the first author, Nucl. Phys., B 830, No. 3, 474–492 (2010; Zbl 1203.83051)]. So far these results include the following families of the integrals: 3-loop onshell massless vertices, 3-loop onshell mass operator type integrals, 4-loop QED-type tadpoles, 4-loop massless propagators. The package can be used for high-precision numerical computation of the expansion of the integrals from the above families around arbitrary space-time dimension. In addition, this package contains convenient tools for the calculation of multiple zeta values, harmonic polylogarithms and other transcendental numbers expressed in terms of nested sums with factorized summand.

MSC:

81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81-04 Software, source code, etc. for problems pertaining to quantum theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
65Y15 Packaged methods for numerical algorithms

Citations:

Zbl 1203.83051
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Kotikov, A. V., Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B, 254, 158-164 (1991)
[2] Kotikov, A. V., Differential equations method: The calculation of vertex type Feynman diagrams, Phys. Lett. B, 259, 314-322 (1991)
[3] Kotikov, A. V., Differential equation method: The calculation of N point Feynman diagrams, Phys. Lett. B, 267, 123-127 (1991)
[4] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cimento A, 110, 1435-1452 (1997)
[5] Lee, R., Space-time dimensionality d as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to d, Nuclear Phys. B, 830, 474 (2010) · Zbl 1203.83051
[6] Lee, R.; Smirnov, A.; Smirnov, V., Analytic results for massless three-loop form factors, J. High Energy Phys., 2010, 4, 1-12 (2010) · Zbl 1272.81196
[7] Lee, R.; Smirnov, V., Analytic epsilon expansions of master integrals corresponding to massless three-loop form factors and three-loop g-2 up to four-loop transcendentality weight, J. High Energy Phys., 1102, 102 (2011) · Zbl 1294.81290
[8] Lee, R.; Terekhov, I., Application of the DRA method to the calculation of the four-loop QED-type tadpoles, J. High Energy Phys., 1101, 068 (2011) · Zbl 1214.81305
[9] Lee, R. N.; Smirnov, A. V.; Smirnov, V. A., Dimensional recurrence relations: an easy way to evaluate higher orders of expansion in \(\epsilon \), Nucl. Phys. Proc. Suppl., 205-206, 308-313 (2010), arXiv:1005.0362
[10] Lee, R. N.; Smirnov, A. V.; Smirnov, V. A., On epsilon expansions of four-loop non-planar massless propagator diagrams, Eur. Phys. J. C, 71, 1708 (2011)
[11] Lee, R. N.; Smirnov, A. V.; Smirnov, V. A., Master integrals for four-loop massless propagators up to transcendentality weight twelve, Nuclear Phys. B, 856, 95-110 (2012) · Zbl 1246.81057
[12] Lee, R. N.; Smirnov, V. A., The dimensional recurrence and analyticity method for multicomponent master integrals: Using unitarity cuts to construct homogeneous solutions, J. High Energy Phys., 1212, 104 (2012) · Zbl 1397.81073
[13] Lee, R. N., DRA method: Powerful tool for the calculation of the loop integrals, J. Phys.: Conf. Ser., 368, Article 012050 pp. (2012), arXiv:1203.4868
[14] Lee, R. N.; Marquard, P.; Smirnov, A. V.; Smirnov, V. A.; Steinhauser, M., Four-loop corrections with two closed fermion loops to fermion self energies and the lepton anomalous magnetic moment, J. High Energy Phys., 1303, 162 (2013)
[15] Derkachov, S. E.; Honkonen, J.; Pis’mak, Y. M., Three-loop calculation of the random walk problem: an application of dimensional transformation and the uniqueness method, J. Phys. A, 23, 5563 (1990)
[16] Tarasov, O. V., Connection between feynman integrals having different values of the space-time dimension, Phys. Rev. D, 54, 6479 (1996) · Zbl 0925.81121
[18] Goncharov, A. B., Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett., 5, 497-516 (1998) · Zbl 0961.11040
[19] Bailey, D. H.; Borwein, J. M.; Kapoor, V.; Weisstein, E. W., Ten problems in experimental mathematics, Amer. Math. Monthly, 113, 6, 481-509 (2006) · Zbl 1153.65301
[20] Remiddi, E.; Vermaseren, J., Harmonic polylogarithms, Internat. J. Modern Phys. A, 15, 725 (2000) · Zbl 0951.33003
[21] Maître, D., Hpl, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Comm., 174, 222 (2006) · Zbl 1196.68330
[22] Baikov, P. A.; Chetyrkin, K. G., Four loop massless propagators: an algebraic evaluation of all master integrals, Nuclear Phys. B, 837, 186-220 (2010) · Zbl 1206.81087
[23] Borwein, J. M.; Bailey, D. H., Mathematics by Experiment (2008), A K Peters/CRC Press, Plausible Reasoning in the 21st Century
[24] Broadhurst, D. J., Massive 3-loop feynman diagrams reducible to sc* primitives of algebras of the sixth root of unity, Eur. Phys. J. C, 8, 311-333 (1999), arXiv:hep-th/9803091
[25] Vollinga, J.; Weinzierl, S., Numerical evaluation of multiple polylogarithms, Comput. Phys. Comm., 167, 177 (2005), arXiv:hep-ph/0410259 · Zbl 1196.65045
[26] Tulyakov, D., A procedure for finding asymptotic expansions for solutions of difference equations, Proc. Steklov Inst. Math., 272, 2, 162-167 (2011) · Zbl 1287.39001
[27] Young, D., An extremal chiral primary three-point function at two-loops in ABJ(M), J. High Energy Phys., 1412, 141 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.