×

A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension. (English) Zbl 1375.76099

Summary: Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the continuum surface force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach \(1.47\) and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

AUSM; HE-E1GODF; PROST
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lee, J.; Lin, K.-C.; Eklund, D., Challenges in fuel injection for high-speed propulsion systems, AIAA J., 53, 1405-1423 (2015)
[2] Guildenbecher, D. R.; López-Rivera, C.; Sojka, P. E., Secondary atomization, Exp. Fluids, 46, 371-402 (2009)
[3] Brackbill, J. U.; Kothe, D.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[4] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 423-456 (1999) · Zbl 0954.76063
[5] Popinet, S.; Zaleski, S., A front-tracking algorithm for accurate representation of surface tension, Int. J. Numer. Methods Fluids, 30, 775-793 (1999) · Zbl 0940.76047
[6] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., 31, 567-603 (1999)
[7] Chen, H., Two-dimensional simulation of stripping breakup of a water droplet, AIAA J., 46, 1135-1143 (2008)
[8] Meng, J. C.; Colonius, T., Numerical simulations of the early stages of high-speed droplet breakup, Shock Waves, 399-414 (2014)
[9] Gorokhovski, M.; Herrmann, M., Modeling primary atomization, Annu. Rev. Fluid Mech., 40, 343-366 (2008) · Zbl 1232.76058
[10] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25-37 (1992) · Zbl 0758.76047
[11] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y. J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574
[12] Abgrall, R.; Karni, S., Computations of compressible multifluids, J. Comput. Phys., 169, 594-623 (2001) · Zbl 1033.76029
[13] Terashima, H.; Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228, 4012-4037 (2009) · Zbl 1171.76046
[14] Terashima, H.; Tryggvason, G., A front-tracking method with projected interface conditions for compressible multi-fluid flows, Comput. Fluids, 39, 1804-1814 (2010) · Zbl 1245.76113
[15] Luo, H.; Baum, J. D.; Lohner, R., On the computation of multi-material flows using ALE formulation, J. Comput. Phys., 194, 304-328 (2004) · Zbl 1136.76401
[16] Chang, C. H.; Deng, X.; Theofanous, T. G., Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys., 242, 946-990 (2013) · Zbl 1299.76097
[17] Xiao, F.; Wang, Z. G.; Sun, M. B.; Liang, J. H.; Liu, N., Large eddy simulation of liquid jet primary breakup in supersonic air crossflow, Int. J. Multiph. Flow, 87, 229-240 (2016)
[18] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[19] Shyue, K.-M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142, 208-242 (1998) · Zbl 0934.76062
[20] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115-1145 (1999) · Zbl 0957.76057
[21] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 577-616 (2002) · Zbl 1169.76407
[22] Shukla, R. K., Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, J. Comput. Phys., 276, 508-540 (2014) · Zbl 1349.65110
[23] So, K. K.; Hu, X. Y.; Adams, N. A., Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys., 231, 4304-4323 (2012) · Zbl 1426.76428
[24] Alahyari Beig, S.; Johnsen, E., Maintaining interface equilibrium conditions in compressible multiphase flows using interface capturing, J. Comput. Phys., 302, 548-566 (2015) · Zbl 1349.76423
[25] Shyue, K. M.; Xiao, F., An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach, J. Comput. Phys., 268, 326-354 (2014) · Zbl 1349.76388
[26] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 150-160 (1996) · Zbl 0847.76060
[27] Johnsen, E.; Ham, F., Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows, J. Comput. Phys., 231, 5705-5717 (2012)
[28] Movahed, P.; Johnsen, E., A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability, J. Comput. Phys., 239, 166-186 (2013)
[29] Johnsen, E.; Colonius, T., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219, 715-732 (2006) · Zbl 1189.76351
[30] Coralic, V.; Colonius, T., Finite-volume WENO scheme for viscous compressible multicomponent flows, J. Comput. Phys., 274, 95-121 (2014) · Zbl 1351.76100
[31] Shukla, R. K.; Pantano, C.; Freund, J. B., An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229, 7411-7439 (2010) · Zbl 1425.76289
[32] Tiwari, A.; Freund, J. B.; Pantano, C., A diffuse interface model with immiscibility preservation, J. Comput. Phys., 252, 290-309 (2013) · Zbl 1349.76395
[33] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials, Int. J. Multiph. Flow, 12, 861-889 (1986) · Zbl 0609.76114
[34] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids, 13, 3002-3024 (2001) · Zbl 1184.76268
[35] Braconnier, B.; Nkonga, B., An all-speed relaxation scheme for interface flows with surface tension, J. Comput. Phys., 228, 5722-5739 (2009) · Zbl 1280.76032
[36] Perigaud, G.; Saurel, R., A compressible flow model with capillary effects, J. Comput. Phys., 209, 139-178 (2005) · Zbl 1329.76301
[37] Le Martelot, S.; Saurel, R.; Nkonga, B., Towards the direct numerical simulation of nucleate boiling flows, Int. J. Multiph. Flow, 66, 62-78 (2014)
[38] Nguyen, N. T.; Dumbser, M., A path-conservative finite volume scheme for compressible multi-phase flows with surface tension, Appl. Math. Comput., 271, 959-978 (2015) · Zbl 1410.76463
[39] Schmidmayer, K.; Petitpas, F.; Daniel, E.; Favrie, N.; Gavrilyuk, S., A model and numerical method for compressible flows with capillary effects, J. Comput. Phys., 334, 468-496 (2017) · Zbl 1375.76198
[40] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 423-456 (1999) · Zbl 0954.76063
[41] Harlow, F.; Amsden, A., Fluid Dynamics (1971), Los Alamos National Laboratory: Los Alamos National Laboratory Los Alamos, NM, Technical report LA-4700 · Zbl 0221.76011
[42] Aslam, T. D., A partial differential equation approach to multidimensional extrapolation, J. Comput. Phys., 193, 349-355 (2004) · Zbl 1036.65002
[43] Renardy, Y.; Renardy, M., PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, J. Comput. Phys., 183, 400-421 (2002) · Zbl 1057.76569
[44] Regele, J. D.; Kassoy, D. R.; Aslani, M.; Vasilyev, O. V., Evolution of detonation formation initiated by a spatially distributed, transient energy source, J. Fluid Mech., 802, 305-332 (2016) · Zbl 1462.80009
[45] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73-85 (1998) · Zbl 0897.65058
[46] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[47] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2009), Springer: Springer New York · Zbl 1227.76006
[48] Einfeldt, B.; Munz, C. D.; Roe, P. L.; Sjögreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 273-295 (1991) · Zbl 0709.76102
[49] Batten, P.; Clarke, N.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553-1570 (1997) · Zbl 0992.65088
[50] Cocchi, J. P.; Saurel, R.; Loraud, J. C., Treatment of interface problems with Godunov-type schemes, Shock Waves, 5, 347-357 (1996) · Zbl 0859.76044
[51] Harvie, D. J.E.; Davidson, M. R.; Rudman, M., An analysis of parasitic current generation in Volume of Fluid simulations, Appl. Math. Model., 30, 1056-1066 (2006) · Zbl 1163.76401
[52] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling Merging and Fragmentation in Multiphase Flows with SURFER (1994) · Zbl 0809.76064
[53] Luo, J.; Hu, X. Y.; Adams, N. A., A conservative sharp interface method for incompressible multiphase flows, J. Comput. Phys., 284, 547-565 (2015) · Zbl 1351.76172
[54] Owkes, M.; Desjardins, O., A mesh-decoupled height function method for computing interface curvature, J. Comput. Phys., 281, 285-300 (2015) · Zbl 1351.76289
[55] Ii, S.; Kazuyasu, S.; Takeuchi, S.; Takagi, S.; Matsumoto, Y.; Xiao, F., An interface capturing method with a continuous function: the THINC method with multi-dimensional reconstruction, J. Comput. Phys., 231, 2328-2358 (2012) · Zbl 1427.76205
[56] Olsson, E.; Kreiss, G.; Zahedi, S., A conservative level set method for two phase flow II, J. Comput. Phys., 225, 785-807 (2007) · Zbl 1256.76052
[57] Lord Rayleigh, On the capillary phenomena of jets, Proc. R. Soc. Lond., 29, 71-97 (1879) · JFM 11.0685.01
[58] Fyfe, D. E.; Oran, E. S.; Fritts, M. J., Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh, J. Comput. Phys., 76, 349-384 (1988) · Zbl 0639.76043
[59] Igra, D.; Takayama, K., Investigation of aerodynamic breakup of a cylindrical water droplet, At. Sprays, 11, 167-185 (2001)
[60] Igra, D.; Sun, M., Shock-water column interaction, from initial impact to fragmentation onset, AIAA J., 48, 2763-2771 (2010)
[61] Nonomura, T.; Kitamura, K.; Fujii, K., A simple interface sharpening technique with a hyperbolic tangent function applied to compressible two-fluid modeling, J. Comput. Phys., 258, 95-117 (2014) · Zbl 1349.76514
[62] Chang, C.-H.; Liou, M.-S., A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+-up scheme, J. Comput. Phys., 225, 840-873 (2007) · Zbl 1192.76030
[63] Nicholls, J. A.; Ranger, A. A., Aerodynamic shattering of liquid drops, AIAA J., 7, 285-290 (1969)
[64] Han, J.; Tryggvason, G., Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force, Phys. Fluids, 11, 3650 (1999) · Zbl 1149.76400
[65] Han, J.; Tryggvason, G., Secondary breakup of a axisymmetric liquid drops. II. Impulsive acceleration, Phys. Fluids, 13, 1554-1565 (2001) · Zbl 1184.76209
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.