×

Dipole excitation of surface plasmon on a conducting sheet: finite element approximation and validation. (English) Zbl 1375.78037

Summary: We formulate and validate a finite element approach to the propagation of a slowly decaying electromagnetic wave, called surface plasmon-polariton, excited along a conducting sheet, e.g., a single-layer graphene sheet, by an electric Hertzian dipole. By using a suitably rescaled form of time-harmonic Maxwell’s equations, we derive a variational formulation that enables a direct numerical treatment of the associated class of boundary value problems by appropriate curl-conforming finite elements. The conducting sheet is modeled as an idealized hypersurface with an effective electric conductivity. The requisite weak discontinuity for the tangential magnetic field across the hypersurface can be incorporated naturally into the variational formulation. We carry out numerical simulations for an infinite sheet with constant isotropic conductivity embedded in two spatial dimensions and validate our numerics against the closed-form exact solution obtained by the Fourier transform in the tangential coordinate. Numerical aspects of our treatment such as an absorbing perfectly matched layer, as well as local refinement and a posteriori error control are discussed.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
78A40 Waves and radiation in optics and electromagnetic theory
78M30 Variational methods applied to problems in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Neto, A. H.C.; Guinea, F.; Peres, N. M.R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene, Rev. Mod. Phys., 81, 109-162 (2009)
[2] Pesin, D.; MacDonald, A. H., Spintronics and pseudospintronics in graphene and topological insulators, Nat. Mater., 11, 419-425 (2012)
[3] Trauzettel, B.; Bulaev, D. V.; Loss, D.; Burkard, G., Spin qubits in graphene quantum dots, Nat. Phys., 3, 192-196 (2007)
[4] Green, M. A.; Pillai, S., Harnessing plasmonics for solar cells, Nat. Photonics, 6, 130-132 (2012)
[5] Geim, A. K.; Grigorieva, I. V., Van der Waals heterostructures, Nature, 499, 419-425 (2013)
[6] Torres, L. E.F. F.; Roche, S.; Charlier, J.-C., Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport (2014), Cambridge University Press: Cambridge University Press Cambridge, UK
[7] Zhang, X. C.; Xu, J., Introduction to THz Wave Photonics (2010), Springer: Springer Berlin
[8] Low, T.; Roldán, R.; Wang, H.; Xia, F.; Avouris, P.; Moreno, L. M.; Guinea, F., Plasmons and screening in monolayer and multilayer black phosphorus, Phys. Rev. Lett., 113, Article 106802 pp. (2014)
[9] Pitarke, J. M.; Silkin, V. M.; Chulkov, E. V.; Echenique, P. M., Theory of surface plasmons and surface-plasmon polaritons, Rep. Prog. Phys., 70, 1-87 (2007)
[10] Bludov, Y. V.; Ferreira, A.; Peres, N.; Vasileskiy, M. I., A primer on surface plasmon-polaritons in graphene, Int. J. Mod. Phys., 27, 10, 1341001 (2013) · Zbl 1267.35225
[11] Alonso-González, P.; Nikitin, A. Y.; Golmar, F.; Centeno, A.; Pesquera, A.; Vélez, S.; Chen, J.; Navickaite, G.; Koppens, F.; Zurutuza, A.; Casanova, F.; Hueso, L. E.; Hillenbrand, R., Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science, 344, 1369-1373 (2014)
[12] Liu, Y.; Palomba, S.; Park, Y.; Zentgraf, T.; Yin, X.; Zhang, X., Compact magnetic antennas for directional excitation of surface plasmons, Nano Lett., 12, 4853-4858 (2012)
[13] Cheng, J.; Wang, W. L.; Mosallaei, H.; Kaxiras, E., Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation, Nano Lett., 14, 50-56 (2014)
[14] Bangerth, W.; Heister, T.; Heltai, L.; Kanschat, G.; Kronbichler, M.; Maier, M.; Turcksin, B., The Library, Version 8.3, Arch. Num. Soft., 4, 100, 1-11 (2016)
[15] Gallinet, B.; Butet, J.; Martin, O. J.F., Numerical methods for nanophotonics: standard problems and future challenges, Laser Photonics Rev., 9, 577-603 (2015)
[16] Yeh, C.; Shimabukuro, F., The Essence of Dielectric Waveguides (2008), Springer: Springer New York
[17] Koppens, F. H.L.; Chang, D. E.; de Abajo, F. J.G., Graphene plasmonics: a platform for strong light-matter interactions, Nano Lett., 11, 3370-3377 (2011)
[18] Yuan-Fong; Yeh, H.-H., A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances, J. Nanopart. Res., 13, 637-644 (2011)
[19] Edel, J. B.; Kornyshev, A. A.; Kucernaka, A. R.; Urbakh, M., Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces, Chem. Soc. Rev., 45, 1581-1596 (2016)
[20] Margetis, D.; Luskin, M., On solutions of Maxwell’s equations with dipole sources over a thin conducting film, J. Math. Phys., 57, Article 042903 pp. (2016) · Zbl 1347.78006
[21] Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings (1986), Springer: Springer Berlin
[22] King, R. W.P.; Owens, M.; Wu, T. T., Lateral Electromagnetic Waves: Theory and Applications to Communications, Geophysical Exploration, and Remote Sensing (1992), Springer-Verlag: Springer-Verlag New York
[23] Müller, C., Foundations of the Mathematical Theory of Electromagnetic Waves (1969), Springer-Verlag: Springer-Verlag New York · Zbl 0181.57203
[24] Schwartz, M., Principles of Electrodynamics, International Series in Pure and Applied Physics (1972), McGraw-Hill Book Company: McGraw-Hill Book Company New York
[25] Maier, S. A., Plasmonics: Fundamentals and Applications (2007), Springer: Springer New York
[26] Dewapriya, N.; Rajapake, N.; Nigam, N., Influence of hydrogen functionalization on the fracture strength of graphene and the interfacial properties of graphene-polymer nanocomposite, Carbon, 93, 830-842 (2015)
[27] Hanson, G. W., J. Appl. Phys., 113, 2, Article 029902 pp. (2013), erratum
[28] Satou, A.; Mikhailov, S. A., Excitation of two-dimensional plasmon polaritons by an incident electromagnetic wave at a contact, Phys. Rev. B, 75, Article 045328 pp. (2007)
[29] Becker, R.; Rannacher, R., A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math., 4, 237-264 (1996) · Zbl 0868.65076
[30] Hanson, G. W.; Yakovlev, A. B.; Mafi, A., Excitation of discrete and continuous spectrum for a surface conductivity model of graphene, J. Appl. Phys., 110, 11, Article 114305 pp. (2011)
[31] Nikitin, A. Y.; Guinea, F.; Garcia-Vidal, F. J.; Martin-Moreno, L., Fields radiated by a nanoemitter in a graphene sheet, Phys. Rev. B, 84, Article 195446 pp. (2011)
[32] Brenner, S. C.; Gedicke, J.; Sung, L.-Y., An adaptive \(P_1\) finite element method for two-dimensional Maxwell’s equations, J. Sci. Comput., 55, 3, 738-754 (2013) · Zbl 1266.78027
[33] Brenner, S. C.; Gedicke, J.; Sung, L.-Y., An adaptive \(P_1\) finite element method for two-dimensional transverse magnetic time harmonic Maxwell’s equations with general material properties and general boundary conditions, J. Sci. Comput., 68, 2, 848-863 (2016) · Zbl 1373.78416
[34] Monk, P., Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation (2003), Oxford University Press · Zbl 1024.78009
[35] Nédélec, J.-C., A new family of mixed finite elements in \(R^3\), Numer. Math., 50, 57-81 (1986) · Zbl 0625.65107
[36] Nédélec, J.-C., Acoustic and Electromagnetics Equations, Appl. Math. Sci., vol. 144 (2001), Springer · Zbl 0981.35002
[37] Bonnet-Ben Dhia, A.-S.; Chesnel, L.; Ciarlet, P., T-coercivity for the Maxwell problem with sign-changing coefficients, Commun. Partial Differ. Equ., 39, 1007-1031 (2014) · Zbl 1297.35229
[38] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory, Class. Appl. Math., vol. 72 (2013), SIAM · Zbl 1291.35003
[39] Jin, J.-M.; Riley, D. J., Finite Element Analysis of Antennas and Arrays (2009), Wiley
[40] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences (2013), Springer · Zbl 1266.35121
[41] Bokil, V.; Gibson, N.; Gyrya, V.; McGregor, D., Dispersion reducing methods for edge discretizations of the electric vector wave equation, J. Comput. Phys., 287, 88-109 (2015) · Zbl 1351.78052
[42] Bérenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200 (1994) · Zbl 0814.65129
[43] Chew, W. C.; Weedon, W. H., A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microw. Opt. Technol. Lett., 7, 13, 599-604 (1994)
[44] Zhao, L.; Cangellaris, A. C., A general approach for the development of unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation, IEEE Microw. Guided Wave Lett., 6, 5, 209-211 (1996)
[45] Bao, G.; Li, P.; Wu, H., An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comput., 79, 1-34 (2010) · Zbl 1197.78031
[46] Becker, R.; Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10, 1-102 (2001) · Zbl 1105.65349
[47] Becker, R.; Rannacher, R., Weighted a posteriori error control in FE methods, (Proceedings of ENUMATH-97. Proceedings of ENUMATH-97, Lecture at ENUMATH-95, Paris, September 18-22, 1995 (1998)), 621-637 · Zbl 0968.65083
[48] Braack, M.; Richter, T., Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements, Comput. Fluids, 35, 27-392 (2006) · Zbl 1160.76364
[50] Davis, T. A., Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization (2011) · Zbl 1365.65122
[51] Davis, T. A.; Amestoy, P. R.; Duff, I. S., SuiteSparse 4.2.1, a Suite of Sparse Matrix Software (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.