×

A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies. (English) Zbl 1380.76106

Summary: We present a moving control volume (CV) approach to computing hydrodynamic forces and torques on complex geometries. The method requires surface and volumetric integrals over a simple and regular Cartesian box that moves with an arbitrary velocity to enclose the body at all times. The moving box is aligned with Cartesian grid faces, which makes the integral evaluation straightforward in an immersed boundary (IB) framework. Discontinuous and noisy derivatives of velocity and pressure at the fluid-structure interface are avoided and far-field (smooth) velocity and pressure information is used. We re-visit the approach to compute hydrodynamic forces and torques through force/torque balance equations in a Lagrangian frame that some of us took in a prior work [the last author et al., ibid. 250, 446–476 (2013; Zbl 1349.65403)]. We prove the equivalence of the two approaches for IB methods, thanks to the use of Peskin’s delta functions. Both approaches are able to suppress spurious force oscillations and are in excellent agreement, as expected theoretically. Test cases ranging from Stokes to high Reynolds number regimes are considered. We discuss regridding issues for the moving CV method in an adaptive mesh refinement (AMR) context. The proposed moving CV method is not limited to a specific IB method and can also be used, for example, with embedded boundary methods.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M85 Fictitious domain methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1349.65403

Software:

PETSc; SAMRAI
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hu, H. H.; Patankar, N. A.; Zhu, M., Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique, J. Comput. Phys., 169, 2, 427-462 (2001) · Zbl 1047.76571
[2] Kern, S.; Koumoutsakos, P., Simulations of optimized anguilliform swimming, J. Exp. Biol., 209, 24, 4841-4857 (2006)
[3] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow, 25, 5, 755-794 (1999) · Zbl 1137.76592
[4] Patankar, N. A.; Singh, P.; Joseph, D. D.; Glowinski, R.; Pan, T.-W., A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow, 26, 9, 1509-1524 (2000) · Zbl 1137.76712
[5] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[6] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 2, 252-271 (1972) · Zbl 0244.92002
[7] Newren, E. P.; Fogelson, A. L.; Guy, R. D.; Kirby, R. M., Unconditionally stable discretizations of the immersed boundary equations, J. Comput. Phys., 222, 2, 702-719 (2007) · Zbl 1158.74350
[8] Newren, E. P.; Fogelson, A. L.; Guy, R. D.; Kirby, R. M., A comparison of implicit solvers for the immersed boundary equations, Comput. Methods Appl. Mech. Eng., 197, 25-28, 2290-2304 (2008) · Zbl 1158.76409
[9] Guy, R. D.; Philip, B., A multigrid method for a model of the implicit immersed boundary equations, Commun. Comput. Phys., 12, 2, 378-400 (2012) · Zbl 1388.65091
[10] Bhalla, A. P.S.; Knepley, M. G.; Adams, M. F.; Guy, R. D.; Griffith, B. E., Scalable smoothing strategies for a geometric multigrid method for the immersed boundary equations, arXiv preprint
[11] Mori, Y.; Peskin, C. S., Implicit second order immersed boundary methods with boundary mass, Comput. Methods Appl. Mech. Eng., 197, 25-28, 2049-2067 (2008) · Zbl 1158.74533
[12] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 2, 448-476 (2005) · Zbl 1138.76398
[13] Bhalla, A. P.S.; Bale, R.; Griffith, B. E.; Patankar, N. A., A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies, J. Comput. Phys., 250, 1, 446-476 (2013) · Zbl 1349.65403
[14] Bhalla, A. P.S.; Bale, R.; Griffith, B. E.; Patankar, N. A., Fully resolved immersed electrohydrodynamics for particle motion, electrolocation, and self-propulsion, J. Comput. Phys., 256, 88-108 (2014) · Zbl 1349.76433
[15] Taira, K.; Colonius, T., The immersed boundary method: a projection approach, J. Comput. Phys., 225, 2, 2118-2137 (2007) · Zbl 1343.76027
[16] Kallemov, B.; Bhalla, A. P.S.; Griffith, B. E.; Donev, A., An immersed boundary method for rigid bodies, Commun. Appl. Math. Comput. Sci., 11, 1, 79-141 (2016) · Zbl 1382.76191
[17] Balboa Usabiaga, F.; Kallemov, B.; Delmotte, B.; Bhalla, A. P.S.; Griffith, B. E.; Donev, A., Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach, Commun. Appl. Math. Comput. Sci., 11, 2, 217-296 (2016)
[18] Ceniceros, H. D.; Fisher, J. E.; Roma, A. M., Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method, J. Comput. Phys., 228, 19, 7137-7158 (2009) · Zbl 1391.74067
[19] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Eng., 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576
[20] Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X. S.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J.; Hong, J.; Chen, X.; Hsu, H., Immersed finite element method and its applications to biological systems, Comput. Methods Appl. Mech. Eng., 195, 13-16, 1722-1749 (2006) · Zbl 1178.76232
[21] Heltai, L.; Costanzo, F., Variational implementation of immersed finite element methods, Comput. Methods Appl. Mech. Eng., 229-232, 110-127 (2012) · Zbl 1253.74035
[22] Griffith, B. E.; Luo, X., Hybrid finite difference/finite element immersed boundary method, Int. J. Numer. Methods Biomed. Eng. (2017)
[23] Lai, M.-C.; Li, Z.-L., A remark on jump conditions for the three-dimensional Navier-Stokes equations involving an immersed moving membrane, Appl. Math. Lett., 14, 2, 149-154 (2001) · Zbl 1013.76021
[24] Li, Z.-L.; Lai, M.-C., The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171, 2, 822-842 (2001) · Zbl 1065.76568
[25] Tseng, Y.-H.; Ferziger, J. H., A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., 192, 2, 593-623 (2003) · Zbl 1047.76575
[26] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227, 10, 4825-4852 (2008) · Zbl 1388.76263
[27] Udaykumar, H.; Mittal, R.; Rampunggoon, P.; Khanna, A., A sharp interface cartesian grid method for simulating flows with complex moving boundaries, J. Comput. Phys., 174, 1, 345-380 (2001) · Zbl 1106.76428
[28] Trebotich, D.; Graves, D., An adaptive finite volume method for the incompressible Navier-Stokes equations in complex geometries, Commun. Appl. Math. Comput. Sci., 10, 1, 43-82 (2015) · Zbl 1516.65075
[29] Lee, J.; Kim, J.; Choi, H.; Yang, K.-S., Sources of spurious force oscillations from an immersed boundary method for moving-body problems, J. Comput. Phys., 230, 7, 2677-2695 (2011) · Zbl 1316.76075
[30] Kundu, P. K.; Cohen, I. M.; Dowling, D. R., Fluid Mechanics (2014), Academic Press
[31] Pozrikidis, C., Introduction to Theoretical and Computational Fluid Dynamics (2011), Oxford University Press · Zbl 1238.76001
[32] Noca, F., On the Evaluation of Time-Dependent Fluid-Dynamic Forces on Bluff Bodies (1997), California Institute of Technology, Ph.D. thesis
[33] Noca, F.; Shiels, D.; Jeon, D., A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives, J. Fluids Struct., 13, 5, 551-578 (1999)
[34] Bergmann, M.; Iollo, A., Modeling and simulation of fish-like swimming, J. Comput. Phys., 230, 2, 329-348 (2011) · Zbl 1416.76357
[35] Bergmann, M.; Iollo, A., Bioinspired swimming simulations, J. Comput. Phys., 323, 310-321 (2016) · Zbl 1415.76787
[36] Griffith, B. E.; Hornung, R. D.; McQueen, D. M.; Peskin, C. S., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223, 1, 10-49 (2007) · Zbl 1163.76041
[37] Lai, M.-C.; Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 2, 705-719 (2000) · Zbl 0954.76066
[38] Verma, S.; Abbati, G.; Novati, G.; Koumoutsakos, P., Computing the force distribution on the surface of complex, deforming geometries using vortex methods and Brinkman penalization, Int. J. Numer. Methods Fluids (2017)
[39] Goza, A.; Liska, S.; Morley, B.; Colonius, T., Accurate computation of surface stresses and forces with immersed boundary methods, J. Comput. Phys., 321, 860-873 (2016) · Zbl 1349.76466
[40] Martins, D. M.C.; Albuquerque, D. M.S.; Pereira, J. C.F., Continuity constrained least-squares interpolation for SFO suppression in immersed boundary methods, J. Comput. Phys., 336, 608-626 (2017)
[41] Vanella, M.; Balaras, E., Short note: a moving-least-squares reconstruction for embedded-boundary formulations, J. Comput. Phys., 228, 18, 6617-6628 (2009) · Zbl 1173.65333
[42] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, 2, 461-469 (1993) · Zbl 0780.65022
[43] Unal, M.; Lin, J.-C.; Rockwell, D., Force prediction by PIV imaging: a momentum-based approach, J. Fluids Struct., 11, 8, 965-971 (1997)
[44] van Oudheusden, B. W.; Scarano, F.; Roosenboom, E. W.; Casimiri, E. W.; Souverein, L. J., Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows, Exp. Fluids, 43, 2-3, 153-162 (2007)
[45] Jardin, T.; David, L.; Farcy, A., Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight, Exp. Fluids, 46, 5, 847-857 (2009)
[46] Shen, L.; Chan, E.-S.; Lin, P., Calculation of hydrodynamic forces acting on a submerged moving object using immersed boundary method, Comput. Fluids, 38, 3, 691-702 (2009) · Zbl 1193.76091
[47] Sällström, E.; Ukeiley, L., Force estimation from incompressible flow field data using a momentum balance approach, Exp. Fluids, 55, 1, 1655 (2014)
[48] IBAMR: an adaptive and distributed-memory parallel implementation of the immersed boundary method
[49] Hornung, R. D.; Kohn, S. R., Managing application complexity in the SAMRAI object-oriented framework, Concurr. Comput., 14, 5, 347-368 (2002) · Zbl 1008.68527
[50] SAMRAI: Structured Adaptive Mesh Refinement Application Infrastructure
[51] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[52] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H., PETSc Users Manual (2016), Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision 3.7
[53] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H., PETSc Web page (2016)
[54] Ploumhans, P.; Winckelmans, G., Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry, J. Comput. Phys., 165, 2, 354-406 (2000) · Zbl 1006.76068
[55] Dütsch, H.; Durst, F.; Becker, S.; Lienhart, H., Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers, J. Fluid Mech., 360, 249-271 (1998) · Zbl 0922.76024
[56] Guilmineau, E.; Queutey, P., A numerical simulation of vortex shedding from an oscillating circular cylinder, J. Fluids Struct., 16, 6, 773-794 (2002)
[57] Borazjani, I.; Ge, L.; Le, T.; Sotiropoulos, F., A parallel overset-curvilinear-immersed boundary framework for simulating complex 3d incompressible flows, Comput. Fluids, 77, 76-96 (2013) · Zbl 1284.76262
[58] Dennis, S. C.R.; Quang, W.; Coutanceau, M.; Launay, J.-L., Viscous flow normal to a flat plate at moderate Reynolds numbers, J. Fluid Mech., 248, 605-635 (1993)
[59] Feng, Z.-G.; Michaelides, E. E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys., 195, 2, 602-628 (2004) · Zbl 1115.76395
[60] Jafari, S.; Yamamoto, R.; Rahnama, M., Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions, Phys. Rev. E, 83, 2, Article 026702 pp. (2011)
[61] Wang, L.; Guo, Z.; Mi, J., Drafting, kissing and tumbling process of two particles with different sizes, Comput. Fluids, 96, 20-34 (2014) · Zbl 1391.76796
[62] Vazquez-Quesada, A.; Balboa Usabiaga, F.; Delgado-Buscalioni, R., A multiblob approach to colloidal hydrodynamics with inherent lubrication, J. Chem. Phys., 141, 20, Article 204102 pp. (2014)
[63] Happel, J.; Brenner, H., Low Reynolds Number Hydrodynamics with Special Application to Particulate Media (1983), Martinus Nijhoff Publishers
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.