×

Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion. II: Application to flow around a sphere at drag crisis. (English) Zbl 1380.76120

Summary: The optimized cumulant lattice Boltzmann method with fourth order accurate diffusion is used to simulate the flow around a sphere up to Reynolds number \(10^6\). The drag crisis is well captured by the method. We demonstrate with our results that the drag crisis corresponds to an almost discrete jump in the flow conditions. The intermediate values of drag in a small range of Reynolds numbers around the drag crisis observed in averaged data sets are found to originate from the flow switching between the high and the low drag conditions. Around the critical Reynolds number, the time spent in the low drag condition increases with the Reynolds number such that the average drag curve has a finite steepness.
For Part I, see [the authors, ibid. 348, 862–888 (2017; Zbl 1380.76119)].

MSC:

76M28 Particle methods and lattice-gas methods

Citations:

Zbl 1380.76119

Software:

OpenFOAM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Geier, M.; Pasquali, A.; Schönherr, M., Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part I: derivation and validation, J. Comput. Phys., 348, 862-888 (2017) · Zbl 1380.76119
[2] Geier, M.; Schönherr, M.; Pasquali, A.; Krafczyk, M., The cumulant lattice Boltzmann equation in three dimensions: theory and validation, Comput. Math. Appl., 70, 4, 507-547 (2015) · Zbl 1443.76172
[3] Far, E. K.; Geier, M.; Kutscher, K.; Krafczyk, M., Distributed cumulant lattice Boltzmann simulation of the dispersion process of ceramic agglomerates, J. Comput. Methods Sci. Eng., 16, 231-252 (2016)
[4] Yang, X.; Mehmani, Y.; Perkins, W. A.; Pasquali, A.; Schönherr, M.; Kim, K.; Perego, M.; Parks, M. L.; Trask, N.; Balhoff, M. T.; Richmond, M. C.; Geier, M.; Krafczyk, M.; Luo, L.-S.; Tartakovsky, A. M.; Scheibe, T. D., Intercomparison of 3d pore-scale flow and solute transport simulation methods, Adv. Water Resour., 95, 176-189 (2016)
[5] Far, E. K.; Geier, M.; Kutscher, K.; Krafczyk, M., Simulation of micro aggregate breakage in turbulent flows by the cumulant lattice Boltzmann method, Comput. Fluids, 140, 222-231 (2016) · Zbl 1390.76711
[6] Pasquali, A.; Schönherr, M.; Geier, M.; Krafczyk, M., Simulation of external aerodynamics of the drivaer model with the lbm on gpgpus, (Parallel Computing: on the Road to Exascale (2016)), 391-400
[7] Dubois, F.; Lallemand, P., Towards higher order lattice Boltzmann schemes, J. Stat. Mech. Theory Exp., 2009, 06 (2009), P06006 · Zbl 1459.76097
[8] Geier, M.; Pasquali, A., Fourth order galilean invariance for the lattice Boltzmann method, Comput. Fluids (2017), submitted for publication
[9] Eiffel, G., Nouvelles recherches sur la résistance de l’air et l’aviation faites au laboratoire d’Auteuil (1914), H. Dunod et E. Piant: H. Dunod et E. Piant Paris
[10] Wieselberger, C., Der luftwiderstand von kugeln, Z. Flugtech. Mot.luftschiffahrt, 140 (1914)
[11] Roshko, A., Experiments on the flow past a circular cylinder at very high reynolds number, J. Fluid Mech., 10, 3, 345-356 (1961) · Zbl 0109.43702
[12] Achenbach, E., Experiments on the flow past spheres at very high reynolds numbers, J. Fluid Mech., 54, 3, 565-575 (1972)
[13] Cadot, O.; Desai, A.; Mittal, S.; Saxena, S.; Chandra, B., Statistics and dynamics of the boundary layer reattachments during the drag crisis transitions of a circular cylinder, Phys. Fluids, 27, 1 (2015)
[14] Constantinescu, G.; Squires, K., Numerical investigations of flow over a sphere in the subcritical and supercritical regimes, Phys. Fluids, 16, 5, 1449-1466 (2004) · Zbl 1186.76112
[15] Muto, M.; Tsubokura, M.; Oshima, N., Negative magnus lift on a rotating sphere at around the critical reynolds number, Phys. Fluids, 24, 1, Article 014102 pp. (2012), (1994-present)
[16] Lehmkuhl, O.; Rodríguez, I.; Borrell, R.; Chiva, J.; Oliva, A., Unsteady forces on a circular cylinder at critical reynolds numbers, Phys. Fluids, 26, 12 (2014)
[17] Chopra, G.; Mittal, S., The intermittent nature of the laminar separation bubble on a cylinder in uniform flow, Comput. Fluids (2016)
[18] Namburi, M.; Krithivasan, S.; Ansumali, S., Crystallographic lattice Boltzmann method, Nature Sci. Rep., 6, Article 27172 pp. (2016)
[19] Kawamura, T.; Takami, H.; Kuwahara, K., Computation of high reynolds number flow around a circular cylinder with surface roughness, Fluid Dyn. Res., 1, 2, 145-162 (1986)
[20] Schönherr, M.; Geier, M.; Krafczyk, M., Non-uniform lb simulations on gpus, (ICMMES 2010 (2010))
[21] Geier, M.; Greiner, A.; Korvink, J. G., Cascaded digital lattice Boltzmann automata for high reynolds number flow, Phys. Rev. E, 73, Article 066705 pp. (2006)
[22] Asinari, P., Generalized local equilibrium in the cascaded lattice Boltzmann method, Phys. Rev. E, 78, Article 016701 pp. (2008)
[23] Geier, M.; Greiner, A.; Korvink, J. G., Properties of the cascaded lattice Boltzmann automaton, Int. J. Mod. Phys. C, 18, 04, 455-462 (2007) · Zbl 1137.76460
[24] Geier, M., De-aliasing and stabilization formalism of the cascaded lattice Boltzmann automaton for under-resolved high Reynolds number flow, Int. J. Numer. Methods Fluids, 56, 8, 1249-1254 (2007) · Zbl 1155.76047
[25] Geier, M.; Greiner, A.; Korvink, J. G., Bubble functions for the lattice Boltzmann method and their application to grid refinement, Eur. Phys. J. Spec. Top., 171, 1, 173-179 (2009)
[26] Schönherr, M.; Kucher, K.; Geier, M.; Stiebler, M.; Freudiger, S.; Krafczyk, M., Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for cpus and gpus, Comput. Math. Appl., 61, 12, 3730-3743 (2011)
[27] Konstantin, K.; Geier, M.; Krafczyk, M., Multiscale simulation of turbulent flow interacting with porous media based on advanced massively parallel lbm models, Comput. Math. Appl. (2017), submitted for publication
[28] Geier, M.; Schönherr, M., Esoteric twist: an efficient in-place streaming algorithmus for the lattice Boltzmann method on massively parallel hardware, Computation, 5, 2 (2017)
[29] A. Pasquali, M. Geier, M. Krafczyk, LBMHexMesh: an OpenFOAM based grid generator for the Lattice Boltzmann Method (LBM), in: 7th Open Source CFD Int. Conf.; A. Pasquali, M. Geier, M. Krafczyk, LBMHexMesh: an OpenFOAM based grid generator for the Lattice Boltzmann Method (LBM), in: 7th Open Source CFD Int. Conf.
[30] Pasquali, A., Enabling the Cumulant Lattice Boltzmann Method for Complex CFD Engineering Problems (2016), Technische Universität Braunschweig, PhD thesis
[31] Schlichting, H., Boundary Layer Theory, Part 1: Laminar Flows (1949), Luftfahrtforschungsanstalt Hermann Goering: Luftfahrtforschungsanstalt Hermann Goering Brunswick, Germany, Tech. rep.
[32] Tetervin, N., Theoretical Distribution of Laminar-Boundary-Layer Thickness, Boundary-Layer Reynolds Number and Stability Limit, and Roughness Reynolds Number for a Sphere and Disk in Incompressible Flow (1958), National Advisory Committee for Aeronautics
[33] Hoffman, J., Simulating drag crisis for a sphere using skin friction boundary conditions, (ECOMAS CFD 2006: Proceedings of the European Conference on Fluid Dynamics (2006), TU Delft: TU Delft The Netherlands)
[34] Hoffman, J., Simulation of turbulent flow past bluff bodies on coarse meshes using general galerkin methods: drag crisis and turbulent euler solutions, Comput. Mech., 38, 4, 390-402 (2006) · Zbl 1188.76225
[35] (Prandtl, L., Strömungsmechanik, bd. 5 (2009), Universitätsverlag Göttingen)
[36] Bakic, V., Experimental Investigation of Turbulent Flows Around a Sphere (2002), Technische Universität Hamburg-Harburg, PhD thesis
[37] Morrison, F. A., An Introduction to Fluid Mechanics (2013), Cambridge University Press · Zbl 1283.76003
[38] Almedeij, J., Drag coefficient of flow around a sphere: matching asymptotically the wide trend, Powder Technol., 186, 3, 218-223 (2008)
[39] Mei, R.; Yu, D.; Shyy, W.; Luo, L.-S., Force evaluation in the lattice Boltzmann method involving curved geometry, Phys. Rev. E, 65, Article 041203 pp. (2002)
[40] Hunt, J.; Wray, A.; Moin, P., Eddies, streams, and convergence zones in turbulent flow, (Center for Turbulence Research Proceedings of the Summer Program, 1988 (1988))
[41] Miau, J. J.; Tsai, H. W.; Lin, Y. J.; Tu, J. K.; Fang, C. H.; Chen, M. C., Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime, Exp. Fluids, 51, 4, 949-967 (2011)
[42] Boghosian, B. M.; Yepez, J.; Coveney, P. V.; Wager, A., Entropic Lattice Boltzmann Methods, Proc. R. Soc., Math. Phys. Eng. Sci., vol. 457, 717-766 (2001), The Royal Society · Zbl 0984.76069
[43] Malaspinas, O.; Deville, M.; Chopard, B., Towards a physical interpretation of the entropic lattice Boltzmann method, Phys. Rev. E, 78, 6, Article 066705 pp. (2008)
[44] F. Tosi, S. Succi, An introduction to entropic lattice Boltzmann scheme, SIMAI e-Lecture Notes 1.; F. Tosi, S. Succi, An introduction to entropic lattice Boltzmann scheme, SIMAI e-Lecture Notes 1.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.