×

Deriving rankings from incomplete preference information: a comparison of different approaches. (English) Zbl 1380.91067

Summary: Volume-based methods for decision making under incomplete information like the SMAA family of methods provide rich probabilistic information to support decision making. However, they usually do not directly generate a unique ranking of alternatives. Methods to create such a unique ranking from incomplete preference information typically select one parameter vector, either by mathematical programming approaches or by averaging, and then apply a preference model using this parameter vector. In the present paper, we develop several models to infer a complete ranking or a complete preorder of alternatives directly from the probabilistic information provided by volume-based methods without singling out a specific parameter vector. We compare the results obtained by these models to those obtained with a single parameter approach in a computational study. Results indicate small, but significant differences in the performance of methods, as well as in the probability that additional preference information might worsen, rather than improve, the results.

MSC:

91B06 Decision theory
91B44 Economics of information
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belton, V.; Stewart, T. J., Multiple criteria decision analysis (2001), Kluwer: Kluwer Amsterdam
[2] Beuthe, M.; Scannella, G., Comparative analysis of UTA multicriteria methods, European Journal of Operational Research, 130, 246-262 (2001) · Zbl 1068.90564
[3] Bous, G.; Fortemps, P.; Glineur, F.; Pirlot, M., Acuta: A novel method for eliciting additive value functions on the basis of holistic preference statements, European Journal of Operational Research, 206, 435-444 (2010) · Zbl 1188.90121
[4] Charnetski, J. R.; Soland, R. M., Multiple-attribute decision making with partial information: The comparative hypervolume criterion, Naval Research Logistics Quarterly, 25, 279-288 (1978) · Zbl 0389.90002
[5] Dias, L. C.; Clímaco, J. C., Additive aggregation with variable interdependent parameters: The VIP analysis software, Journal of the Operational Research Society, 51, 9, 1070-1082 (2000) · Zbl 1107.90368
[6] Ehrgott, M.; Figueira, J.; Greco, S., Trends in multiple criteria decision analysis (2010), Springer: Springer New York · Zbl 1200.90007
[7] Eiselt, H. A.; Laporte, G., The use of domains in multicriteria decision making, European Journal of Operational Research, 61, 3, 292-298 (1992) · Zbl 0757.90040
[8] Graf, C.; Six, M., The effect of information on the quality of decisions, Central European Journal of Operations Research, 22, 4, 647-662 (2014) · Zbl 1339.91040
[9] Graf, C.; Vetschera, R.; Zhang, Y., Parameters of social preference functions: Measurement and external validity, Theory and Decision, 74, 357-382 (2013) · Zbl 1273.91124
[10] Greco, S.; Mousseau, V.; Słowiński, R., Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions, European Journal of Operational Research, 191, 2, 416-436 (2008) · Zbl 1147.90013
[11] Hazen, G. B., Partial information, dominance, and potential optimality in multiattribute utility theory, Operations Research, 34, 2, 296-310 (1986) · Zbl 0625.90048
[12] Jacquet-Lagrèze, E.; Siskos, J., Assessing a set of additive utility functions for multicriteria decision-making, the UTA method, European Journal of Operational Research, 10, 151-164. (1982) · Zbl 0481.90078
[13] Jacquet-Lagrèze, E.; Siskos, Y., Preference disaggregation: 20 years of MCDA experience, European Journal of Operational Research, 130, 2, 233-245 (2001) · Zbl 1068.90566
[14] Kadziński, M.; Greco, S.; Słowiński, R., Selection of a representative value function in robust multiple criteria ranking and choice, European Journal of Operational Research, 217, 541-553 (2012) · Zbl 1244.91026
[15] Kadziński, M.; Tervonen, T., Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements, European Journal of Operational Research, 228, 1, 169-180 (2013)
[16] Kirkwood, C. W.; Sarin, R. K., Ranking with partial information: A method and an application, Operations Research, 33, 1, 38-48 (1985) · Zbl 0569.90052
[17] Kmietowicz, Z.; Pearman, A., Decision theory, linear partial information and statistical dominance, Omega, 12, 4, 391-399 (1984)
[19] Lahdelma, R.; Hokkanen, J.; Salminen, P., SMAA - Stochastic multiobjective acceptability analysis, European Journal of Operational Research, 106, 1, 137-143 (1998)
[20] Lahdelma, R.; Salminen, P., SMAA-2: Stochastic multicriteria acceptability analysis for group decision making, Operations Research, 49, 3, 444-454 (2001) · Zbl 1163.90552
[21] Leskinen, P.; Viitanen, J.; Kangas, A.; Kangas, J., Alternatives to incorporate uncertainty and risk attitude in multicriteria evaluation of forest plans, Forest science, 52, 3, 304-312 (2006)
[22] Park, K.; Kim, S.; Yoon, W., An extended model for establishing dominance in multiattribute decisionmaking, Journal of the Operational Research Society, 47, 11, 1415-1420 (1996) · Zbl 0863.90099
[23] Park, K. S.; Kim, S. H., Tools for interactive multiattribute decisionmaking with incompletely identified information, European Journal of Operational Research, 98, 1, 111-123 (1997) · Zbl 0920.90085
[24] Park, K. S.; Lee, K. S.; Eum, Y. S.; Park, K., Extended methods for identifying dominance and potential optimality in multi-criteria analysis with imprecise information, European Journal of Operational Research, 134, 3, 557-563 (2001) · Zbl 0984.90019
[26] Roy, B., Decision science or decision-aid science?, European Journal of Operational Research, 66, 2, 184-203 (1993)
[27] Rubinstein, R., Generating random vectors uniformly distributed inside and on the surface of different regions, European Journal of Operational Research, 10, 2, 205-209 (1982) · Zbl 0491.65006
[28] Salo, A. A.; Hämäläinen, R. P., Preference programming through approximate ratio comparisons, European Journal of Operational Research, 82, 458-475 (1995) · Zbl 0909.90006
[29] Sarabando, P.; Dias, L. C., Simple procedures of choice in multicriteria problems without precise information about the alternatives’ values, Computers and Operations Research, 37, 2239-2247 (2010) · Zbl 1231.90242
[30] Srinivasan, V.; Shocker, A. D., Estimating the weights for multiple attributes in a composite criterion using pairwise judgements, Psychometrika, 38, 473-493 (1973) · Zbl 0281.62075
[31] Starr, M., Product design and decision theory (1962), Prentice Hall: Prentice Hall Englewood Cliffs
[32] Tervonen, T.; Figueira, J., A survey on stochastic multicriteria acceptability analysis methods, Journal of Multicriteria Decision Analysis, 15, 1-14 (2008) · Zbl 1205.90268
[33] Tervonen, T.; Lahdelma, R., Implementing stochastic multicriteria acceptability analysis, European Journal of Operational Research, 178, 500-513 (2007) · Zbl 1107.90026
[34] Tervonen, T.; van Valkenhoef, G.; Bastürk, N.; Postmus, D., Hit-and-run enables efficient weight generation for simulation-based multiple criteria decision analysis, European Journal of Operational Research, 224, 3, 552-559 (2013) · Zbl 1292.91057
[35] Toubia, O.; Hauser, J. R.; Simester, D. I., Polyhedral methods for adaptive choice-based conjoint analysis, Journal of Marketing Research, 41, 116-131 (2004)
[36] van Valkenhoef, G.; Tervonen, T., Entropy-optimal weight constraint elicitation with additive multi-attribute utility models, Omega, 64, 1-12 (2016)
[37] van Valkenhoef, G.; Tervonen, T.; Postmus, D., Notes on hit-and-run enables efficient weight generation for simulation-based multiple criteria decision analysis, European Journal of Operational Research, 239, 3, 865-867 (2014) · Zbl 1339.90331
[38] Vetschera, R., Learning about preferences in electronic negotiations - A volume based measurement method, European Journal of Operational Research, 194, 452-463 (2009) · Zbl 1154.90523
[39] Wagner, H. M., Principles of Operations Research (1975), Prentice Hall: Prentice Hall London
[40] Weber, M., Decision making with incomplete information, European Journal of Operational Research, 28, 1, 44-57 (1987) · Zbl 0604.90004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.