×

Gradient augmented level set method for phase change simulations. (English) Zbl 1380.76077

Summary: A numerical method for the simulation of two-phase flow with phase change based on the gradient-augmented-level-set (GALS) strategy is presented. Sharp capturing of the vaporization process is enabled by: i) identification of the vapor-liquid interface, \(\Gamma(t)\), at the subgrid level, ii) discontinuous treatment of thermal physical properties (except for \(\mu\)), and iii) enforcement of mass, momentum, and energy jump conditions, where the gradients of the dependent variables are obtained at \(\Gamma (t)\) and are consistent with their analytical expression, i.e., no local averaging is applied. Treatment of the jump in velocity and pressure at \(\Gamma (t)\) is achieved using the ghost fluid method. The solution of the energy equation employs the sub-grid knowledge of \(\Gamma (t)\) to discretize the temperature Laplacian using second-order one-sided differences, i.e., the numerical stencil completely resides within each respective phase. To carefully evaluate the benefits or disadvantages of the GALS approach, the standard level set method is implemented and compared against the GALS predictions. The results show the expected trend that interface identification and transport are predicted noticeably better with GALS over the standard level set. This benefit carries over to the prediction of the Laplacian and temperature gradients in the neighborhood of the interface, which are directly linked to the calculation of the vaporization rate. However, when combining the calculation of interface transport and reinitialization with two-phase momentum and energy, the benefits of GALS are to some extent neutralized, and the causes for this behavior are identified and analyzed. Overall the additional computational costs associated with GALS are almost the same as those using the standard level set technique.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Collier, J. G.; Thome, J. R., Convective Boiling and Condensation (1996), Oxford University Press Inc.
[2] Welch, S., Local simulation of two-phase flows including interface tracking with mass transfer, J. Comput. Phys., 121, 142-154 (1995) · Zbl 0839.76069
[3] Juric, D.; Tryggvason, G., Computations of boiling flows, Int. J. Multiph. Flow, 24, 387-410 (1998) · Zbl 1121.76455
[4] Son, G.; Dhir, V., Numerical simulation of film boiling near critical pressures with a level set method, J. Heat Transf., 120, 183-192 (1998)
[5] Son, G.; Dhir, K., A level set method for analysis of film boiling on an immersed solid surface, Numer. Heat Transf., Part B, Fundam., 52, 153-177 (2007)
[6] Welch, S.; Wilson, J., A volume of fluid based method for fluid flows with phase change, J. Comput. Phys., 160, 662-682 (2000) · Zbl 0962.76068
[7] Son, G., A numerical method for bubble motion with phase change, Numer. Heat Transf., Part B, Fundam., 39, 509-523 (2001)
[8] Mihalef, V.; Unlusu, B.; Metaxas, D.; Sussman, M.; Hussaini, M. Y., Physics-based boiling simulation, (Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2006))
[9] Gibou, F.; Chen, L.; Nguyen, D.; Banerjee, S., A level set based sharp interface method for the multiphase incompressible Navier-Stokes equaqtions with phase change, J. Comput. Phys., 222, 536-555 (2007) · Zbl 1158.76403
[10] Tanguy, S.; Menard, T.; Berlemont, A., A level set method for vaporing two-phase flows, J. Comput. Phys., 221, 837-853 (2007) · Zbl 1216.76054
[11] Tanguy, S.; Sagan, M.; Lalanne, B.; Couderc, F.; Colin, C., Benchmarks and numerical methods for the simulation of boiling flows, J. Comput. Phys., 264, 1-22 (2014) · Zbl 1349.76853
[12] Hardt, S.; Wondra, F., Evaporation model for interfacial flows based o a continuum-field representation of the source terms, J. Comput. Phys., 227, 5871-5895 (2008) · Zbl 1220.80011
[13] Kunkelmann, C.; Stephan, P., CFD simulation of boiling flows using the volume-of-fluid method within OpenFOAM, Numer. Heat Transf., Part A, Appl., 56, 631-646 (2009)
[14] Magnini, M.; Pulvirenti, B.; Thome, J., Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel, Int. J. Heat Mass Transf., 59, 451-471 (2013)
[15] Magnini, M.; Thome, J., Computational study of saturated flow boiling within a microchannel in the slug flow regime, J. Heat Transf., 138, 021502, 1-12 (2016)
[16] Villegas, L.; Alis, R.; Lepilliez, M.; Tanguy, S., A ghost fluid/level set method for boiling flows and liquid evaporation: application to the Leidenfrost effect, J. Comput. Phys., 316, 789-813 (2016) · Zbl 1349.76382
[17] Nabil, M.; Rattner, A., interThermalPhaseChangeFoam - a framework for two-phase flow simulations with thermally driven phase change, SoftwareX, 5, 216-226 (2016)
[18] Shaikh, J.; Sharma, A.; Bhardwaj, R., On sharp-interface level-set method for heat and/or mass transfer induced Stefan problem, Int. J. Heat Mass Transf., 96, 458-473 (2016)
[19] Samkhaniani, N.; Ansari, M., Numerical simulation of bubble condensation using CF-VOF, Prog. Nucl. Energy, 89, 120-131 (2016)
[20] Irfan, M.; Muradoglu, M., A front tracking method for direct numerical simulation of evaporation process in a multiphase system, J. Comput. Phys., 337, 132-153 (2017) · Zbl 1415.76639
[21] Sato, Y.; Niceno, B., Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region, Int. J. Heat Mass Transf., 105, 505-524 (2017)
[22] Lee, M.; Riaz, A.; Aute, V., Direct numerical simulation of incompressible multiphase flow with phase change, J. Comput. Phys., 344, 381-418 (2017) · Zbl 1380.76083
[23] Slattery, J., Advanced Transport Phenomena (1999), Cambridge University Press · Zbl 0963.76003
[24] Liu, X.; Fedkiw, R.; Kang, M., A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys., 154, 151-178 (2000) · Zbl 0958.65105
[25] Youngs, D., Time-dependent multi-material flow with large fluid distortion, (Morton, K. W.; Baines, M. J., Numerical Methods for Fluid Dynamics (1982), Academic: Academic New York), 273-285 · Zbl 0537.76071
[26] Rider, W.; Kothe, D., Reconstructing volume tracking, J. Comput. Phys., 141, 112-152 (1998) · Zbl 0933.76069
[27] Renardy, Y.; Renardy, M., PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, J. Comput. Phys., 183, 400-421 (2002) · Zbl 1057.76569
[28] Aulisa, E.; Manservisi, S.; Scardovelli, R., A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase flows, J. Comput. Phys., 188, 611-639 (2003) · Zbl 1127.76346
[29] Diwakar, S.; Das, S.; Sundararajan, T., A quadratic spline based interface (QUASI) reconstruction algorithm for accurate tracking of two-phase flows, J. Comput. Phys., 228, 9107-9130 (2009) · Zbl 1388.76243
[30] Deshpande, S.; Anumolu, L.; Trujillo, M., Evaluating the performance of the two-phase flow solver interFoam, Comput. Sci. Discovery, 5, 1, Article 014016 pp. (2012)
[31] Kobayashi, R., Modeling and numerical simulations of dendritic crystal growth, Physica D, 63, 410-423 (1993) · Zbl 0797.35175
[32] Jacqmin, D., Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155, 96-127 (1999) · Zbl 0966.76060
[33] Sato, Y.; Niceno, B., A sharp-interface phase change model for a mass-conservative interface tracking method, J. Comput. Phys., 249, 127-161 (2013)
[34] Gibou, F.; Fedkiw, R.; Cheng, L.-T.; Kang, M., A second-order-accurate symmetric discretization of the Poisson equation on irregular domains, J. Comput. Phys., 176, 205-227 (2002) · Zbl 0996.65108
[35] Sato, Y.; Niceno, B., A conservative local interface sharpening scheme for the constrained interpolation profile method, Int. J. Numer. Methods Fluids, 70, 441-467 (2012) · Zbl 1412.76070
[36] Nakamura, T.; Tanaka, R.; Yabe, T.; Takizawa, K., Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique, J. Comput. Phys., 174, 171-207 (2001) · Zbl 0995.65094
[37] Liu, H.; Krishnan, S.; Marella, S.; Udaykumar, H., Sharp interface Cartesian grid method II: a technique for simulating droplet interactions with surfaces of arbitrary shape, J. Comput. Phys., 210, 32-54 (2005) · Zbl 1154.76358
[38] Menard, T.; Tanguy, S.; Berlemont, A., Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet, Int. J. Multiph. Flow, 33, 510-524 (2007)
[39] Wang, Z.; Tong, A., A sharp surface tension modeling method for two-phase incompressible interfacial flows, Int. J. Numer. Methods Fluids, 64, 709-732 (2010) · Zbl 1426.76438
[40] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[41] Nave, J.-C.; Rosales, R. R.; Seibold, B., A gradient-augmented level set method with an optimally local, coherent advection scheme, J. Comput. Phys., 229, 3802-3827 (2010) · Zbl 1189.65214
[42] Trujillo, M.; Anumolu, L.; Ryddner, D., The distortion of the level set gradient under advection, J. Comput. Phys., 334, 81-101 (2017) · Zbl 1375.76199
[43] Son, G.; Dhir, V.; Ramanujapu, N., Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface, J. Heat Transf., 121, 623-631 (1999)
[44] Son, G.; Ramanujapu, N.; Dhir, V., Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling, J. Heat Transf., 124, 51-62 (2002)
[45] Mukherjee, A.; Dhir, V., Study of lateral merger of vapor bubbles during nucleate pool boiling, J. Heat Transf., 126, 1023-1039 (2004)
[46] Son, G.; Dhir, V., Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes, Int. J. Heat Mass Transf., 51, 2566-2582 (2008) · Zbl 1144.80368
[47] Son, G.; Dhir, V., Three-dimensional simulation of saturated film boiling on a horizontal cylinder, Int. J. Heat Mass Transf., 51, 1156-1167 (2008) · Zbl 1152.80315
[48] Kundu, P.; Cohen, I., Fluid Mechanics (2008), Academic Press
[49] Ferziger, J. H.; Peric, M., Computational Methods for Fluid Dynamics (2002), Springer · Zbl 0998.76001
[50] Anumolu, L.; Trujillo, M. F., Gradient augmented reinitialization scheme for the level set method, Int. J. Numer. Methods Fluids, 73, 12, 1011-1041 (2013) · Zbl 1455.76122
[51] Russo, G.; Smereka, P., A remark on computing distance functions, J. Comput. Phys., 163, 51-67 (2000) · Zbl 0964.65089
[52] Aslam, T., A partial differential equation approach to multidimensional extrapolation, J. Comput. Phys., 193, 349-355 (2004) · Zbl 1036.65002
[53] Chorin, A., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 12-26 (1967) · Zbl 0149.44802
[54] Osher, S.; Sethian, J. A., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[55] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[56] Sussman, M.; Smith, K.; Hussaini, M.; Ohta, M.; Zhi-Wei, R., A sharp interface method for incompressible two-phase flows, J. Comput. Phys., 264, 1-22 (2007)
[57] Kang, M.; Fedkiw, R. P.; Liu, X.-D., A boundary condition capturing method for multiphase incompressible flow, J. Sci. Comput., 15, 3, 323-360 (2000) · Zbl 1049.76046
[58] Osher, S.; Fedkiw, R., Level Set Methods and Dynamics Implicit Surfaces (2002), Springer: Springer New York
[59] Alexiades, V.; Solomon, A., Mathematical Modeling of Melting and Freezing Processes (1993), Hemisphere: Hemisphere Washington, D.C.
[60] Guedon, G. (2013), Ph.D. thesis
[61] Almgren, R., Variational algorithms and pattern formation in dendritic solidification, J. Comput. Phys., 106, 337-354 (1992) · Zbl 0787.65095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.