×

Calculation of critical parameters for spontaneous combustion for some complex geometries using an indirect numerical method. (English) Zbl 1384.65089

Summary: In the theory of spontaneous combustion, identifying the critical value of the Frank-Kamenetskii parameter corresponds to solving a bifurcation point problem. There are two different numerical methods used to solve this problem – the direct and indirect numerical methods. The latter finds the bifurcation point by solving a partial differential equation (PDE) problem. This is a better method to find the bifurcation point for complex geometries. This paper improves the indirect numerical method by combining the grid-domain extension method with the matrix equation computation method. We calculate the critical parameters of the Frank-Kamenetskii equation for some complex geometries using the indirect numerical method. Our results show that both the curve of the outer boundary and the height of the geometries have an effect on the values of the critical Frank-Kamenetskii parameter, however, they have little effect on the critical dimensionless temperature.

MSC:

65P30 Numerical bifurcation problems
80A25 Combustion
37M20 Computational methods for bifurcation problems in dynamical systems

Software:

Algorithm 432
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C.Anderson and O.Zienkiewicz, “Spontaneous ignition: finite element solutions for steady and transient conditions“, J. Heat Transfer96 (1974) 398-404; doi:<uri xlink:href=”https://doi.org/10.1115/1.3450212“ xlink:type=”simple“>10.1115/1.3450212.<pub-id pub-id-type=”doi”>10.1115/1.3450212 · doi:10.1115/1.3450212
[2] J. D.Anderson, Computational fluid dynamics: the basics with applications (McGraw Hill, New York, 1995).
[3] R. H.Bartels and G. W.Stewart, “Solution of the matrix equation <![CDATA \([ax+xb=c]]\)> [f4]“, Commun. ACM15 (1972) 820-826; doi:<uri xlink:href=”https://doi.org/10.1145/361573.361582“ xlink:type=”simple“>10.1145/361573.361582.<pub-id pub-id-type=”doi”>10.1145/361573.361582 · Zbl 1372.65121 · doi:10.1145/361573.361582
[4] T.Boddington, P.Gray and D. I.Harvey, “Thermal theory of spontaneous ignition: criticality in bodies of arbitrary shape“, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.270 (1971) 467-506; doi:<uri xlink:href=”https://doi.org/10.1016/j.amc.2011.06.009“ xlink:type=”simple“>10.1016/j.amc.2011.06.009.<pub-id pub-id-type=”doi”>10.1098/rsta.1971.0087 · doi:10.1098/rsta.1971.0087
[5] P. C.Bowes, Self-heating: evaluating and controlling the hazards (Elsevier, Amsterdam, 1984).
[6] X.Du and C.Feng, “Critical parameters for the thermal explosion of exothermic systems having two-dimensional geometries (in Chinese)”, J. Beijing Inst. Tech.14 (1994) 37-42.
[7] D. A.Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics (Plenum Press, New York, 1969).
[8] G.Golub, S.Nash and C.Van Loan, “A Hessenberg-Schur method for the problem <![CDATA \([ax+xb=c]]\)>“, IEEE Trans. Automatic Control24 (1979) 909-913; doi:<uri xlink:href=”https://doi.org/10.1109/TAC.1979.1102170“ xlink:type=”simple“>10.1109/TAC.1979.1102170.<pub-id pub-id-type=”doi”>10.1109/TAC.1979.1102170 · Zbl 0421.65022 · doi:10.1109/TAC.1979.1102170
[9] B.Gray, “Spontaneous combustion and self-heating“, in SFPE handbook of fire protection engineering, 5th edn (eds <string-name name-style=”western“> <given-names initials=”M.“>M. J.Hurley), (Springer, New York, 2016) 604-632; doi:<uri xlink:href=”https://doi.org/10.1007/978-1-4939-2565-0“ xlink:type=”simple“>10.1007/978-1-4939-2565-0.<pub-id pub-id-type=”doi”>10.1007/978-1-4939-2565-0_20 · doi:10.1007/978-1-4939-2565-0_20
[10] Q.Luo, D.Liang and S.Mo, “Numerical calculation of the critical parameters of Frank-Kamenetskii equation in spontaneous combustion theory“, Numer. Heat Transfer, Part B: Fundamentals68 (2015) 403-417; doi:<uri xlink:href=”https://doi.org/10.1080/10407790.2015.1036625“ xlink:type=”simple“>10.1080/10407790.2015.1036625.<pub-id pub-id-type=”doi”>10.1080/10407790.2015.1036625 · doi:10.1080/10407790.2015.1036625
[11] G.Moore and A.Spence, “The calculation of turning points of nonlinear equations“, SIAM J. Numer. Anal.17 (1980) 567-576; doi:<uri xlink:href=”https://doi.org/10.1137/0717048“ xlink:type=”simple“>10.1137/0717048.<pub-id pub-id-type=”doi”>10.1137/0717048 · Zbl 0454.65042 · doi:10.1137/0717048
[12] P. W.Partridge and L. C.Wrobel, “The dual reciprocity boundary element method for spontaneous ignition“, Int. J. Numer. Methods Eng.30 (1990) 953-963; doi:<uri xlink:href=”https://doi.org/10.1002/nme.1620300502“ xlink:type=”simple“>10.1002/nme.1620300502.<pub-id pub-id-type=”doi”>10.1002/nme.1620300502 · doi:10.1002/nme.1620300502
[13] A. T.Prata and E. M.Sparrow, “Heat transfer and fluid flow characteristics for an annulus of periodically varying cross section“, Numer. Heat Transfer7 (1984) 285-304; doi:<uri xlink:href=”https://doi.org/10.1080/01495728408961826“ xlink:type=”simple“>10.1080/01495728408961826.<pub-id pub-id-type=”doi”>10.1080/01495728408961826 · Zbl 0557.76042 · doi:10.1080/01495728408961826
[14] D.Roose and V.Hlavacek, “Numerical computation of Hopf bifurcation points for parabolic diffusion-reaction differential equations“, SIAM J. Appl. Math.43 (1983) 1075-1085; doi:<uri xlink:href=”https://doi.org/10.1137/0143070“ xlink:type=”simple“>10.1137/0143070.<pub-id pub-id-type=”doi”>10.1137/0143070 · Zbl 0548.35012 · doi:10.1137/0143070
[15] D.Roose and V.Hlavacek, “A direct method for the computation of Hopf bifurcation points“, SIAM J. Appl. Math.45 (1985) 879-894; doi:<uri xlink:href=”https://doi.org/10.1137/0145053“ xlink:type=”simple“>10.1137/0145053.<pub-id pub-id-type=”doi”>10.1137/0145053 · Zbl 0592.65080 · doi:10.1137/0145053
[16] D.Roose, R.Piessens, V.Hlavacek and P.van Rompay, “Direct evaluation of critical conditions for thermal explosion and catalytic reaction“, Combust. Flame55 (1984) 323-329; doi:<uri xlink:href=”https://doi.org/10.1016/0010-2180(84)90171-8“ xlink:type=”simple“>10.1016/0010-2180(84)90171-8.<pub-id pub-id-type=”doi”>10.1016/0010-2180(84)90171-8 · doi:10.1016/0010-2180(84)90171-8
[17] M. J.Sexton, C.Macaskill and B. F.Gray, “Thermal ignition in rectangular and triangular regions“, ANZIAM J.42(E) (2000) C1283-C1304; doi:<uri xlink:href=”https://doi.org/10.0000/anziamj.v42i0.646“ xlink:type=”simple“>10.0000/anziamj.v42i0.646.<pub-id pub-id-type=”doi”>10.21914/anziamj.v42i0.646 · doi:10.21914/anziamj.v42i0.646
[18] R.Seydel, “Numerical computation of branch points in nonlinear equations“, Numer. Math.33 (1979) 339-352; doi:<uri xlink:href=”https://doi.org/10.1007/BF01398649“ xlink:type=”simple“>10.1007/BF01398649.<pub-id pub-id-type=”doi”>10.1007/BF01398649 · Zbl 0396.65023 · doi:10.1007/BF01398649
[19] D. C.Sorensen and Y.Zhou, “Direct methods for matrix sylvester and lyapunov equations“, J. Appl. Math.2003 (2003) 277-303; doi:<uri xlink:href=”https://doi.org/10.1155/S1110757X03212055“ xlink:type=”simple“>10.1155/S1110757X03212055.<pub-id pub-id-type=”doi”>10.1155/S1110757X03212055 · Zbl 1028.65039 · doi:10.1155/S1110757X03212055
[20] W.Tao, Numerical heat transfer, 2nd edn (Xi’an Jiaotong University Press, 2001) (in Chinese).
[21] D.Xue and Y.Chen, Solving applied mathematical problems with MATLAB (Chapman and Hall/CRC, Boca Raton, 2008); doi:10.1201/b17177.10.1201/b17177 · Zbl 1156.00013 · doi:10.1201/b17177
[22] Y. P.Zhang, G. H.Su, S. Z.Qiu, W. X.Tian, X.Gaus-Liu, F.Kretzschmar and A.Miassoedov, “Numerical study on the heat transfer characteristics of live-l4 melt pool with a partial solidification process“, Prog. Nucl. Energy74 (2014) 213-221; doi:<uri xlink:href=”https://doi.org/10.1016/j.pnucene.2014.03.011“ xlink:type=”simple“>10.1016/j.pnucene.2014.03.011.<pub-id pub-id-type=”doi”>10.1016/j.pnucene.2014.03.011 · doi:10.1016/j.pnucene.2014.03.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.