×

Practical implementation of extended Kalman filtering in chemical systems with sparse measurements. (English) Zbl 06858144

Summary: Chemical systems are often characterized by a number of peculiar properties that create serious challenges to state estimator algorithms. They may include hard nonlinear dynamics, states subject to some constraints arising from a physical nature of the process (for example, all chemical concentrations must be nonnegative), and so on. The classical Extended Kalman Filter (EKF), which is considered to be the most popular state estimator in practice, is shown to be ineffective in chemical systems with infrequent measurements. In this paper, we discuss a recently designed version of the EKF method, which is grounded in a high-order Ordinary Differential Equation (ODE) solver with automatic global error control. The implemented global error control boosts the quality of state estimation in chemical engineering and allows this newly built version of the EKF to be an accurate and efficient state estimator in chemical systems with both short and long waiting times (i.e., with frequent and infrequent measurements). So chemical systems with variable sampling periods are algorithmically admitted and can be treated as well.

MSC:

65-XX Numerical analysis
93E11 Filtering in stochastic control theory

Software:

RODAS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] I. Arasaratnam, S. Haykin, and T. R. Hurd, Cubature Kalman filtering for continuous-discrete systems: Theory and simulations. IEEE Trans. Signal Process. 58 (2010), 4977-4993.; Arasaratnam, I.; Haykin, S.; Hurd, T. R., Cubature Kalman filtering for continuous-discrete systems: Theory and simulations, IEEE Trans. Signal Process, 58, 4977-4993 (2010) · Zbl 1391.93223
[2] G. J. Bierman, Factorization Methods for Discrete Sequential Estimation. Academic Press, New York, 1977.; Bierman, G. J., Factorization Methods for Discrete Sequential Estimation (1977) · Zbl 0372.93001
[3] G. J. Bierman, M. R. Belzer, J. S. Vandergraft, and D. W. Porter, Maximum likelihood estimation using square root information filters. IEEE Trans. Automat. Contr. 35 (1990), 1293-1298.; Bierman, G. J.; Belzer, M. R.; Vandergraft, J. S.; Porter, D. W., Maximum likelihood estimation using square root information filters, IEEE Trans. Automat. Contr, 35, 1293-1298 (1990) · Zbl 0723.93071
[4] M. Boutayeb, H. Rafaralahy, and M. Darouach, Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems. IEEE Trans. Automat. Contr. 42 (1997), 581-586.; Boutayeb, M.; Rafaralahy, H.; Darouach, M., Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems, IEEE Trans. Automat. Contr, 42, 581-586 (1997) · Zbl 0876.93089
[5] J. C. Butcher, Numerical Methods for Ordinary Differential Equations. John Wiley and Sons, Chichester, 2008.; Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2008) · Zbl 1167.65041
[6] D. Dochain, State and parameter estimation in chemical and biochemical processes: a tutorial. J. Process Control 13 (2003), 801-818.; Dochain, D., State and parameter estimation in chemical and biochemical processes: a tutorial, J. Process Contro, 13, 801-818 (2003)
[7] P. Frogerais, J.-J. Bellanger, and L. Senhadji, Various ways to compute the continuous-discrete extended Kalman filter. IEEE Trans. Automat. Contr. 57 (2012), 1000-1004.; Frogerais, P.; Bellanger, J.-J.; Senhadji, L., Various ways to compute the continuous-discrete extended Kalman filter, IEEE Trans. Automat. Contr, 57, 1000-1004 (2012) · Zbl 1369.93624
[8] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control. Prentice-Hall, Englewood Cliffs, New Jersey, 1984.; Goodwin, G. C.; Sin, K. S., Adaptive Filtering Prediction and Control (1984) · Zbl 0653.93001
[9] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theoryand Practice. Prentice Hall, New Jersey, 2001.; Grewal, M. S.; Andrews, A. P., Kalman Filtering: Theoryand Practice (2001)
[10] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, Berlin, 1993.; Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems (1993) · Zbl 0789.65048
[11] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Verlag, Berlin, 1996.; Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1996) · Zbl 0859.65067
[12] E. L. Haseltine and J. B. Rawlings, Critical evaluation of extended Kalman filtering and moving-horizon estimation, Ind. Eng. Chem. Res. 44 (2005), 2451-2460.; Haseltine, E. L.; Rawlings, J. B., Critical evaluation of extended Kalman filtering and moving-horizon estimation, Ind. Eng. Chem. Res, 44, 2451-2460 (2005)
[13] D.J. Higham and N. J. Higham, MATLAB Guide. SIAM, Philadelphia, 2005.; Higham, D. J.; Higham, N. J., MATLAB Guide (2005)
[14] Z. Jackiewicz, General Linear Methods for Ordinary Differential Equations. John Wiley and Sons, Hoboken, 2009.; Jackiewicz, Z., General Linear Methods for Ordinary Differential Equations (2009) · Zbl 1211.65095
[15] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.; Jazwinski, A. H., Stochastic Processes and Filtering Theory (1970) · Zbl 0203.50101
[16] J. B. Jørgensen, P. G. Thomsen, H. Madsen, and M. R. Kristensen, A computationally efficient and robust implementation of the continuous-discrete extended Kalman filter. In: Proc. of the American Control Conference, New York, USA, pp. 37063712, Jul. 2007.; Jørgensen, J. B.; Thomsen, P. G.; Madsen, H.; Kristensen, M. R., A computationally efficient and robust implementation of the continuous-discrete extended Kalman filter, Proc. of the American Control Conference. New York, USA, 3706-3712 (2007)
[17] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall, New Jersey, 2000.; Kailath, T.; Sayed, A. H.; Hassibi, B., Linear Estimation (2000) · Zbl 0980.93077
[18] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1999.; Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1999) · Zbl 0701.60054
[19] M. R. Kristensen, J. B. Jørgensen, P. G. Thomsen, and S. B. Jørgensen, An ESDIRK method with sensitivity analysis capabilities, Comput. Chem. Eng. 28 (2004), 2695-2707.; Kristensen, M. R.; Jørgensen, J. B.; Thomsen, P. G.; Jørgensen, S. B., An ESDIRK method with sensitivity analysis capabilities, Comput. Chem. Eng, 28, 2695-2707 (2004)
[20] G. Yu. Kulikov, Cheap global error estimation in some Runge-Kutta pairs, IMA J. Numer. Anal. 33 (2013), 136-163.; Kulikov, G. Yu., Cheap global error estimation in some Runge-Kutta pairs, IMA J. Numer. Anal, 33, 136-163 (2013) · Zbl 1271.65119
[21] G. Yu. Kulikov, Embedded symmetric nested implicit Runge-Kutta methods of Gauss and Lobatto types for solving stiff ordinary differential equations and Hamiltonian systems, Comput. Math. Math. Phys. 55 (2015), 983-1003.; Kulikov, G. Yu., Embedded symmetric nested implicit Runge-Kutta methods of Gauss and Lobatto types for solving stiff ordinary differential equations and Hamiltonian systems, Comput. Math. Math. Phys, 55, 983-1003 (2015) · Zbl 1325.65105
[22] G. Yu. Kulikov and M. V. Kulikova, Accurate numerical implementation of the continuous-discrete extended Kalman filter. IEEE Trans.Automat. Contr. 59 (2014), 273-279.; Kulikov, G. Yu.; Kulikova, M. V., Accurate numerical implementation of the continuous-discrete extended Kalman filter, IEEE Trans.Automat. Contr, 59, 273-279 (2014) · Zbl 1360.93700
[23] G. Yu. Kulikov and M. V. Kulikova, The accurate continuous-discrete extended Kalman filter for continuous-time stochastic systems. Russ.J. Numer. Anal. Math. Modelling 30 (2015), 239-249.; Kulikov, G. Yu.; Kulikova, M. V., The accurate continuous-discrete extended Kalman filter for continuous-time stochastic systems, Russ.J. Numer. Anal. Math. Modellin, 30, 239-249 (2015) · Zbl 1321.65012
[24] G. Yu. Kulikov and M. V. Kulikova, High-order accurate continuous-discrete extended Kalman filter for chemical engineering. Eur. J. Contr. 21 (2015), 14-26.; Kulikov, G. Yu.; Kulikova, M. V., High-order accurate continuous-discrete extended Kalman filter for chemical engineering, Eur. J. Contr, 21, 14-26 (2015) · Zbl 1403.93184
[25] G. Yu. Kulikov and M. V. Kulikova, The accurate continuous-discrete extended Kalman filter for radar tracking. IEEE Trans. Signal Process. 64 (2016), 948-958.; Kulikov, G. Yu.; Kulikova, M. V., The accurate continuous-discrete extended Kalman filter for radar tracking, IEEE Trans. Signal Process, 64, 948-958 (2016) · Zbl 1412.94052
[26] G. Yu. Kulikov and M. V. Kulikova, The continuous-discrete extended Kalman filter revisited. Russ.J. Numer. Anal. Math. Modelling 32 (2017), 27-38.; Kulikov, G. Yu.; Kulikova, M. V., The continuous-discrete extended Kalman filter revisited, Russ.J. Numer. Anal. Math. Modellin, 32, 27-38 (2017) · Zbl 1362.93154
[27] G. Yu. Kulikov and S. K. Shindin, Adaptive nested implicit Runge-Kutta formulas of Gauss type. Appl. Numer. Math. 59 (2009), 707-722.; Kulikov, G. Yu.; Shindin, S. K., Adaptive nested implicit Runge-Kutta formulas of Gauss type, Appl. Numer. Math, 59, 707-722 (2009) · Zbl 1161.65055
[28] M. V. Kulikova and G. Yu. Kulikov, Square-root accurate continuous-discrete extended Kalman filter for target tracking. In: Proc. of the 52-nd IEEE Conference on Decision and Control, Florence, Italy, pp. 7785-7790, Dec. 2013.; Kulikova, M. V.; Kulikov, G. Yu., Square-root accurate continuous-discrete extended Kalman filter for target tracking, Proc. of the 52-nd IEEE Conference on Decision and Control. Florence, Italy, 7785-7790 (2013) · Zbl 1412.94052
[29] M. V. Kulikova and G. Yu. Kulikov, Adaptive ODE solvers in extended Kalman filtering algorithms. J. Comput. Appl. Math. 262 (2014), 205-216.; Kulikova, M. V.; Kulikov, G. Yu., Adaptive ODE solvers in extended Kalman filtering algorithms, J. Comput. Appl. Math, 262, 205-216 (2014) · Zbl 1301.65062
[30] F. L. Lewis, Optimal Estimation: with an Introduction to Stochastic Control Theory. John Wiley & Sons, New York, 1986.; Lewis, F. L., Optimal Estimation: with an Introduction to Stochastic Control Theory (1986) · Zbl 0665.93065
[31] P. S. Maybeck, Stochastic Models, Estimation and Control: Volume 1. Academic Press, London, 1979.; Maybeck, P. S., Stochastic Models, Estimation and Control: Volume 1 (1979) · Zbl 0464.93002
[32] T. Mazzoni, Computational aspects of continuous-discrete extended Kalman filtering. Comput. Statist. 23 (2008), 519-539.; Mazzoni, T., Computational aspects of continuous-discrete extended Kalman filtering, Comput. Statist, 23, 519-539 (2008) · Zbl 1224.62083
[33] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design. Bob Hill Publishing, LLC, Madison, Wisconsin, 2013.; Rawlings, J. B.; Mayne, D. Q., Model Predictive Control: Theory and Design (2013) · Zbl 1056.93619
[34] K. Reif, S. Günther, E. Yaz, and R. Unbehauen, Stochastic stability of the continuous-time extended Kalman filter. IEE Proc. Control Theory Appl. 147 (2000), 45-52.; Reif, K.; Günther, S.; Yaz, E.; Unbehauen, R., Stochastic stability of the continuous-time extended Kalman filter, IEE Proc. Control Theory Appl, 147, 45-52 (2000) · Zbl 0967.93090
[35] A. Romanenko and J. A. A. M. Castro, The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study. Comput. Chem. Eng. 28 (2004), 347-355.; Romanenko, A.; Castro, J. A. A. M., The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study, Comput. Chem. Eng, 28, 347-355 (2004)
[36] A. Romanenko, L. O. Santos, and P. A. F. N. A. Afonso, Unscented Kalman filtering of a simulated pH system. Ind. Eng. Chem. Res. 43 (2004), 7531-7538.; Romanenko, A.; Santos, L. O.; Afonso, P. A. F. N. A., Unscented Kalman filtering of a simulated pH system, Ind. Eng. Chem. Res, 43, 7531-7538 (2004)
[37] R. Schneider and C. Georgakis, How to not make the extended Kalman filter fail. Ind. Eng. Chem. Res. 52 (2013), 3354-3362.; Schneider, R.; Georgakis, C., How to not make the extended Kalman filter fail, Ind. Eng. Chem. Res, 52, 3354-3362 (2013)
[38] D. Simon, Optimal State Estimation: Kalman, H Infinity and Nonlinear Approaches. Wiley, Hoboken, New Jersey, 2006.; Simon, D., Optimal State Estimation: Kalman, H Infinity and Nonlinear Approaches (2006)
[39] M. Soroush, State and parameter estimation and their applications in process control. Comput. Chem. Eng. 23 (1998), 229-245.; Soroush, M., State and parameter estimation and their applications in process control, Comput. Chem. Eng, 23, 229-245 (1998)
[40] D. I. Wilson, M. Agarwal, and D. W. T. Rippin, Experiences implementing the extended Kalman filter on an industrial batch reactor. Comput. Chem. Eng. 22 (1998), 1653-1672.; Wilson, D. I.; Agarwal, M.; Rippin, D. W. T., Experiences implementing the extended Kalman filter on an industrial batch reactor, Comput. Chem. Eng, 22, 1653-1672 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.