×

Application of quantifier elimination to inverse buckling problems. (English) Zbl 1394.74040

Summary: The inverse buckling problem for a column is the problem where both the loading and the buckling mode are defined in advance (the latter generally in a polynomial form), and the flexural rigidity of the column is sought in a similar form with the help of the related ordinary differential equation. This problem was proposed and studied in many buckling problems by Elishakoff and his collaborators. A serious difficulty in its solution is that the resulting flexural rigidity should be positive along the column. Here in order to check this positivity, the modern computational method of quantifier elimination is proposed and used inside the computational environment offered by the computer algebra system Mathematica and mainly based on the Collins cylindrical algebraic decomposition algorithm. At first, the simple inverse buckling problem of an inhomogeneous column under a concentrated load is studied with respect to the aforementioned positivity requirement. Next, the much more difficult problem concerning a variable distributed loading is also studied both in the case of one parameter and in the case of two parameters in this loading. Parametric rational and trigonometric forms of the flexural rigidity are also studied. Naturally, the resulting conditions for the positivity of the flexural rigidity are rather simple for one loading parameter, but they may become sufficiently complicated for two loading parameters. The present computational approach constitutes a simple, efficient and mathematically rigorous way for the derivation of positivity conditions for the flexural rigidity of a column in a variety of inverse buckling problems.

MSC:

74G60 Bifurcation and buckling
74G75 Inverse problems in equilibrium solid mechanics

Software:

Mathematica; QEPCAD
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability, 2nd ed. McGraw-Hill, New York (1961). Recent Dover ed.: Dover Publications, Mineola, NY (2009). http://store.doverpublications.com/0486472078.html · Zbl 1005.68188
[2] Wang, C.M., Wang, C.Y., Reddy, J.N.: Exact Solutions for Buckling of Structural Members. CRC Press, Boca Raton, FL (2005). https://www.crcpress.com/Exact-Solutions-for-Buckling-of-Structural-Members/Wang-Wang/p/book/9780203483534
[3] Atanackovic, T.M., Milisavljevic, B.M.: Some estimates for a buckling problem. Acta Mech. 41, 63-71 (1981). doi:10.1007/BF01246904 · Zbl 0464.73048
[4] Smith, W.G.: Analytic solutions for tapered column buckling. Comput. Struct. 28, 677-681 (1988). doi:10.1016/0045-7949(88)90011-9 · Zbl 0629.73038
[5] Eisenberger, M.: Buckling loads for variable cross-section members with variable axial forces. Int. J. Solids Struct. 27, 135-143 (1991). doi:10.1016/0020-7683(91)90224-4
[6] Elishakoff, I., Rollot, O.: New closed-form solutions for buckling of a variable stiffness column by Mathematica. J. Sound Vibr. 224, 172-182 (1999). doi:10.1006/jsvi.1998.2143 · Zbl 1235.74042
[7] Elishakoff, I.: Euler’s problem revisited: 222 years later. Mecc. 36, 265-272 (2001). doi:10.1023/A:1013974623741 · Zbl 1049.74566
[8] Elishakoff, I.: Inverse buckling problem for inhomogeneous columns. Int. J. Solids Struct. 38, 457-464 (2001). doi:10.1016/S0020-7683(00)00049-4 · Zbl 1009.74021
[9] Elishakoff, I.: A closed-form solution for the generalized Euler problem. Proc. R. Soc. Lond. A: Math., Phys. Eng. Sci. 456, 2409-2417 (2000). doi:10.1098/rspa.2000.0618 · Zbl 0984.74029
[10] Elishakoff, I., Guédé, Z.: Novel closed-form solutions in buckling of inhomogeneous columns under distributed variable loading. Chaos, Solitons Fractals 12, 1075-1089 (2001). doi:10.1016/S0960-0779(00)00073-4 · Zbl 1076.74518
[11] Elishakoff, I., Endres, J.: Extension of Euler’s problem to axially graded columns: two hundred and sixty years later. J. Intell. Mater. Syst. Struct. 16, 77-83 (2005). doi:10.1177/1045389X05047598
[12] Elishakoff, I.: Buckling of a column made of functionally graded material. Arch. Appl. Mech. 82, 1355-1360 (2012). doi:10.1007/s00419-012-0662-0 · Zbl 1293.74117
[13] Elishakoff, I., Eisenberger, M., Delmas, A.: Buckling and vibration of functionally graded material columns sharing Duncan’s mode shape, and new cases. Struct. 5, 170-174 (2016). doi:10.1016/j.istruc.2015.11.002
[14] Elishakoff, I.: Eigenvalues of Inhomogeneous Structures: Unusual Closed-Form Solutions. CRC Press, Boca Raton, FL (2005). https://www.crcpress.com/Eigenvalues-of-Inhomogeneous-Structures-Unusual-Closed-Form-Solutions/Elishakoff/p/book/9780849328923 · Zbl 1082.74002
[15] Elishakoff, I., Pentaras, D., Gentilini, C.: Mechanics of Functionally Graded Material Structures. World Scientific, Singapore (2015). http://www.worldscientific.com/worldscibooks/10.1142/9505 · Zbl 1338.74001
[16] Catellani, G., Elishakoff, I.: Apparently first closed-form solutions of semi-inverse buckling problems involving distributed and concentrated loads. Thin-Walled Struct. 42, 1719-1733 (2004). doi:10.1016/j.tws.2004.05.007
[17] Caliò, I., Elishakoff, I.: Closed form trigonometric solution of inhomogeneous beam-columns: buckling problem. In: Elishakoff, I. (ed.) Mechanical Vibration: Where Do We Stand? CISM Courses and Lectures, No. 488, CISM, Udine, pp. 455-474. Springer, Wien (2007). doi:10.1007/978-3-211-70963-4_16 · Zbl 1298.74086
[18] Caliò, I., Elishakoff, I.: Can a trigonometric function serve both as the vibration and the buckling mode of an axially graded structure? Mech. Based Des. Struct. Mach. 32, 401-421 (2004). doi:10.1081/SME-200028002
[19] Elishakoff, I., Ruta, G.C., Stavsky, Y.: A novel formulation leading to closed-form solutions for buckling of circular plates. Acta Mech. 185, 81-88 (2006). doi:10.1007/s00707-006-0347-2 · Zbl 1099.74022
[20] Pavlović, M.N.: Symbolic computation in structural engineering. Comput. Struct. 81, 2121-2136 (2003). doi:10.1016/S0045-7949(03)00286-4
[21] Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: [25] pp. 85-121 (1998). doi:10.1007/978-3-7091-9459-1_4. Reproduced from the original publication in Brakhage, H. (ed.) Proceedings of the 2nd GI Conference Kaiserslautern Automata Theory and Formal Languages. Lecture Notes in Computer Science, vol. 33, pp. 134-183. Springer, Berlin (1975). doi:10.1007/3-540-07407-4_17
[22] Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12, 299-328 (1991). doi:10.1016/S0747-7171(08)80152-6 · Zbl 0754.68063
[23] Strzeboński, A.: Cylindrical algebraic decomposition using local projections. J. Symb. Comput. 76, 36-64 (2016). doi:10.1016/j.jsc.2015.11.018 · Zbl 1350.14042
[24] Strzeboński, A.: CAD Adjacency Computation Using Validated Numerics. Cornell University Library, Ithaca, NY (2017). arXiv:1704.06856 · Zbl 1458.14067
[25] Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, Wien (1998). doi:10.1007/978-3-7091-9459-1 · Zbl 0906.03033
[26] Weispfenning, V.: Quantifier elimination for real algebra-the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8, 85-101 (1997). doi:10.1007/s002000050055 · Zbl 0867.03003
[27] Ratschan, S.: Applications of Quantified Constraint Solving Over the Reals-Bibliography. Cornell University Library, Ithaca, NY (2012). arXiv:1205.5571v1 · Zbl 1076.74518
[28] Ioakimidis, N.I.: Application of quantifier elimination to a simple elastic beam finite element below a straight rigid obstacle. Mech. Res. Commun. 22, 271-278 (1995). doi:10.1016/0093-6413(95)00023-K · Zbl 0850.73343
[29] Ioakimidis, N.I.: Lack-of-contact conditions for a penny-shaped crack under a polynomial normal loading. Acta Mech. 117, 229-235 (1996). doi:10.1007/BF01181051 · Zbl 0946.74052
[30] Ioakimidis, N.I.: Quantifier elimination in applied mechanics problems with cylindrical algebraic decomposition. Int. J. Solids Struct. 34, 4037-4070 (1997). doi:10.1016/S0020-7683(97)00002-4 · Zbl 0942.74664
[31] Ioakimidis, N.I.: Fracture initiation at an elastic crack tip: a computational implementation of the \[T\] T-criterion. Int. J. Fract. 98, 293-311 (1999). doi:10.1023/A:1018662729282
[32] Ioakimidis, N.I.: Derivation of conditions of complete contact for a beam on a tensionless Winkler elastic foundation with Mathematica. Mech. Res. Commun. 72, 64-73 (2016). doi:10.1016/j.mechrescom.2016.01.007
[33] Ioakimidis, N.I.: Caustics, pseudocaustics and the related illuminated and dark regions with the computational method of quantifier elimination. Opt. Lasers Eng. 88, 280-300 (2017). doi:10.1016/j.optlaseng.2016.07.001
[34] Wolfram Research Inc.: Mathematica, Version 7.0. Wolfram Research Inc., Champaign, IL (2008). https://www.wolfram.com · Zbl 1365.74092
[35] Wolfram Research Inc.: Wolfram Language Tutorial: Real Polynomial Systems. Wolfram Research Inc., Champaign, IL (2014). https://reference.wolfram.com/language/tutorial/RealPolynomialSystems.html
[36] Trott, M.: The Mathematica GuideBook for Symbolics. Springer, New York (2006). doi:10.1007/0-387-28815-5 · Zbl 1095.68001
[37] Pau, P., Schicho, J.: Quantifier elimination for trigonometric polynomials by cylindrical trigonometric decomposition. J. Symb. Comput. 29, 971-983 (2000). doi:10.1006/jsco.1999.0352 · Zbl 1005.68188
[38] Wu, L., Zhang, L., Wang, Q., Elishakoff, I.: Reconstructing cantilever beams via vibration mode with a given node location. Acta Mech. 217, 135-148 (2011). doi:10.1007/s00707-010-0383-9 · Zbl 1398.74159
[39] He, M., Zhang, L., Wang, Q.: Reconstructing cross-sectional physical parameters for two-span beams with overhang using fundamental mode. Acta Mech. 225, 349-359 (2014). doi:10.1007/s00707-013-0963-6 · Zbl 1401.74122
[40] He, M., Zhang, L., Huang, Z., Wang, Q.: Reconstructing the axial stiffness of a symmetric rod with two elastic supports using single mode. Acta Mech. 228, 1511-1524 (2017). doi:10.1007/s00707-016-1783-2 · Zbl 1365.74092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.