×

Strong stability preserving explicit peer methods for discontinuous Galerkin discretizations. (English) Zbl 1398.65162

Summary: In this paper we study explicit peer methods with the strong stability preserving (SSP) property for the numerical solution of hyperbolic conservation laws in one space dimension. A system of ordinary differential equations is obtained by discontinuous Galerkin (DG) spatial discretizations, which are often used in the method of lines approach to solve hyperbolic differential equations. We present in this work the construction of explicit peer methods with stability regions that are designed for DG spatial discretizations and with large SSP coefficients. Methods of second- and third order with up to six stages are optimized with respect to both properties. The methods constructed are tested and compared with appropriate Runge-Kutta methods. The advantage of high stage order is verified numerically.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Butcher, J.C.: General linear methods. Acta Numer. 15, 157-256 (2006) · Zbl 1113.65072 · doi:10.1017/S0962492906220014
[2] Calvo, M., Montijano, J.I., Rández, L., Van Daele, M.: On the derivation of explicit two-step peer methods. Appl. Numer. Math. 61(4), 395-409 (2011) · Zbl 1215.65120 · doi:10.1016/j.apnum.2010.11.004
[3] Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411-435 (1989) · Zbl 0662.65083
[4] Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \[P^1\] P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25(3), 337-361 (1989) · Zbl 0732.65094 · doi:10.1051/m2an/1991250303371
[5] Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173-261 (2001) · Zbl 1065.76135 · doi:10.1023/A:1012873910884
[6] Constantinescu, E., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130-3150 (2009) · Zbl 1217.65179 · doi:10.1137/090766206
[7] Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27-43 (1963) · Zbl 0123.11703 · doi:10.1007/BF01963532
[8] Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011) · Zbl 1241.65064 · doi:10.1142/7498
[9] Horváth, Z., Podhaisky, H., Weiner, R.: Strong stability preserving explicit peer methods. In: Report 04, Martin Luther University Halle-Wittenberg, http://www.mathematik.uni-halle.de/institut/reports/ (2014) · Zbl 1328.65151
[10] Horváth, Z., Podhaisky, H., Weiner, R.: Strong stability preserving explicit peer methods. J. Comput. Appl. Math. 296, 776-788 (2016) · Zbl 1328.65151 · doi:10.1016/j.cam.2015.11.005
[11] Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271-298 (2015) · Zbl 1329.65164 · doi:10.1007/s10915-014-9961-7
[12] Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Chichester (2009) · Zbl 1211.65095 · doi:10.1002/9780470522165
[13] Ketcheson, D.I., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247-271 (2013) · Zbl 1259.65114 · doi:10.2140/camcos.2012.7.247
[14] Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge-Kutta methods. SIAM J. Numer. Anal. 49(6), 2618-2639 (2011) · Zbl 1240.65278 · doi:10.1137/10080960X
[15] Klinge, M.: Peer-Methoden für DG-Diskretisierungen. In: Master’s thesis, Martin Luther University Halle-Wittenberg (2016) · Zbl 1304.65219
[16] Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic \[p\] p-adaptive Runge-Kutta discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 198(21-26), 1766-1774 (2009) · Zbl 1227.76032 · doi:10.1016/j.cma.2009.01.007
[17] Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order strong-stability-preserving Runge-Kutta time discretizations. J. Comput. Phys. 222(2), 832-848 (2007) · Zbl 1113.65093 · doi:10.1016/j.jcp.2006.08.005
[18] Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge-Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60(2), 313-344 (2014) · Zbl 1304.65219 · doi:10.1007/s10915-013-9796-7
[19] Kulikov, G.Y., Weiner, R.: Variable-stepsize interpolating explicit parallel peer methods with inherent global error control. SIAM J. Sci. Comput. 32(4), 1695-1723 (2010) · Zbl 1215.65125 · doi:10.1137/090764840
[20] Li, G., Xing, Y.: Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. J. Sci. Comput. 67(2), 493-513 (2016) · Zbl 1381.76184 · doi:10.1007/s10915-015-0093-5
[21] Mirabito, C., Dawson, C., Kubatko, E.J., Westerink, J.J., Bunya, S.: Implementation of a discontinuous Galerkin morphological model on two-dimensional unstructured meshes. Comput. Methods Appl. Mech. Eng. 200(1-4), 189-207 (2010) · Zbl 1225.76201
[22] Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. In: Technical Report LA-UR-73-479 p. Los Alamos Scientific Laboratory (1973) · Zbl 1329.65164
[23] Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227(3), 1887-1922 (2008) · Zbl 1153.65097 · doi:10.1016/j.jcp.2007.10.007
[24] Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50(4), 405-418 (1987) · Zbl 0589.65069 · doi:10.1007/BF01396661
[25] Schmitt, B.A., Weiner, R., Beck, S.: Two-step peer methods with continuous output. BIT Numer. Math. 53(3), 717-739 (2013) · Zbl 1281.65098 · doi:10.1007/s10543-012-0415-z
[26] Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1-22 (1997) · Zbl 0868.65040 · doi:10.1137/S1064827594276424
[27] Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226-1245 (2007) · Zbl 1144.65055 · doi:10.1137/060661739
[28] Trahan, C.J., Dawson, C.: Local time-stepping in Runge-Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 217-220, 139-152 (2012) · Zbl 1253.76065 · doi:10.1016/j.cma.2012.01.002
[29] Weiner, R., Biermann, K., Schmitt, B.A., Podhaisky, H.: Explicit two-step peer methods. Comput. Math. Appl. 55(4), 609-619 (2008) · Zbl 1142.65060 · doi:10.1016/j.camwa.2007.04.026
[30] Weiner, R., Schmitt, B.A., Podhaisky, H., Jebens, S.: Superconvergent explicit two-step peer methods. J. Comput. Appl. Math. 223, 753-764 (2009) · Zbl 1166.65037 · doi:10.1016/j.cam.2008.02.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.